Dynamic Equations on Time Scales

Dynamic Equations on Time Scales PDF Author: Martin Bohner
Publisher: Springer Science & Business Media
ISBN: 1461202019
Category : Mathematics
Languages : en
Pages : 365

Get Book Here

Book Description
On becoming familiar with difference equations and their close re lation to differential equations, I was in hopes that the theory of difference equations could be brought completely abreast with that for ordinary differential equations. [HUGH L. TURRITTIN, My Mathematical Expectations, Springer Lecture Notes 312 (page 10), 1973] A major task of mathematics today is to harmonize the continuous and the discrete, to include them in one comprehensive mathematics, and to eliminate obscurity from both. [E. T. BELL, Men of Mathematics, Simon and Schuster, New York (page 13/14), 1937] The theory of time scales, which has recently received a lot of attention, was introduced by Stefan Hilger in his PhD thesis [159] in 1988 (supervised by Bernd Aulbach) in order to unify continuous and discrete analysis. This book is an intro duction to the study of dynamic equations on time scales. Many results concerning differential equations carryover quite easily to corresponding results for difference equations, while other results seem to be completely different in nature from their continuous counterparts. The study of dynamic equations on time scales reveals such discrepancies, and helps avoid proving results twice, once for differential equa tions and once for difference equations. The general idea is to prove a result for a dynamic equation where the domain of the unknown function is a so-called time scale, which is an arbitrary nonempty closed subset of the reals.

Dynamic Equations on Time Scales

Dynamic Equations on Time Scales PDF Author: Martin Bohner
Publisher: Springer Science & Business Media
ISBN: 1461202019
Category : Mathematics
Languages : en
Pages : 365

Get Book Here

Book Description
On becoming familiar with difference equations and their close re lation to differential equations, I was in hopes that the theory of difference equations could be brought completely abreast with that for ordinary differential equations. [HUGH L. TURRITTIN, My Mathematical Expectations, Springer Lecture Notes 312 (page 10), 1973] A major task of mathematics today is to harmonize the continuous and the discrete, to include them in one comprehensive mathematics, and to eliminate obscurity from both. [E. T. BELL, Men of Mathematics, Simon and Schuster, New York (page 13/14), 1937] The theory of time scales, which has recently received a lot of attention, was introduced by Stefan Hilger in his PhD thesis [159] in 1988 (supervised by Bernd Aulbach) in order to unify continuous and discrete analysis. This book is an intro duction to the study of dynamic equations on time scales. Many results concerning differential equations carryover quite easily to corresponding results for difference equations, while other results seem to be completely different in nature from their continuous counterparts. The study of dynamic equations on time scales reveals such discrepancies, and helps avoid proving results twice, once for differential equa tions and once for difference equations. The general idea is to prove a result for a dynamic equation where the domain of the unknown function is a so-called time scale, which is an arbitrary nonempty closed subset of the reals.

Advances in Dynamic Equations on Time Scales

Advances in Dynamic Equations on Time Scales PDF Author: Martin Bohner
Publisher: Springer Science & Business Media
ISBN: 0817682309
Category : Mathematics
Languages : en
Pages : 354

Get Book Here

Book Description
Excellent introductory material on the calculus of time scales and dynamic equations.; Numerous examples and exercises illustrate the diverse application of dynamic equations on time scales.; Unified and systematic exposition of the topics allows good transitions from chapter to chapter.; Contributors include Anderson, M. Bohner, Davis, Dosly, Eloe, Erbe, Guseinov, Henderson, Hilger, Hilscher, Kaymakcalan, Lakshmikantham, Mathsen, and A. Peterson, founders and leaders of this field of study.; Useful as a comprehensive resource of time scales and dynamic equations for pure and applied mathematicians.; Comprehensive bibliography and index complete this text.

Functional Dynamic Equations on Time Scales

Functional Dynamic Equations on Time Scales PDF Author: Svetlin G. Georgiev
Publisher: Springer
ISBN: 3030154203
Category : Mathematics
Languages : en
Pages : 886

Get Book Here

Book Description
This book is devoted to the qualitative theory of functional dynamic equations on time scales, providing an overview of recent developments in the field as well as a foundation to time scales, dynamic systems, and functional dynamic equations. It discusses functional dynamic equations in relation to mathematical physics applications and problems, providing useful tools for investigation for oscillations and nonoscillations of the solutions of functional dynamic equations on time scales. Practice problems are presented throughout the book for use as a graduate-level textbook and as a reference book for specialists of several disciplines, such as mathematics, physics, engineering, and biology.

Conformable Dynamic Equations on Time Scales

Conformable Dynamic Equations on Time Scales PDF Author: Douglas R. Anderson
Publisher: CRC Press
ISBN: 100009393X
Category : Mathematics
Languages : en
Pages : 347

Get Book Here

Book Description
The concept of derivatives of non-integer order, known as fractional derivatives, first appeared in the letter between L’Hopital and Leibniz in which the question of a half-order derivative was posed. Since then, many formulations of fractional derivatives have appeared. Recently, a new definition of fractional derivative, called the "fractional conformable derivative," has been introduced. This new fractional derivative is compatible with the classical derivative and it has attracted attention in areas as diverse as mechanics, electronics, and anomalous diffusion. Conformable Dynamic Equations on Time Scales is devoted to the qualitative theory of conformable dynamic equations on time scales. This book summarizes the most recent contributions in this area, and vastly expands on them to conceive of a comprehensive theory developed exclusively for this book. Except for a few sections in Chapter 1, the results here are presented for the first time. As a result, the book is intended for researchers who work on dynamic calculus on time scales and its applications. Features Can be used as a textbook at the graduate level as well as a reference book for several disciplines Suitable for an audience of specialists such as mathematicians, physicists, engineers, and biologists Contains a new definition of fractional derivative About the Authors Douglas R. Anderson is professor and chair of the mathematics department at Concordia College, Moorhead. His research areas of interest include dynamic equations on time scales and Ulam-type stability of difference and dynamic equations. He is also active in investigating the existence of solutions for boundary value problems. Svetlin G. Georgiev is currently professor at Sorbonne University, Paris, France and works in various areas of mathematics. He currently focuses on harmonic analysis, partial differential equations, ordinary differential equations, Clifford and quaternion analysis, dynamic calculus on time scales, and integral equations.

Stability Theory for Dynamic Equations on Time Scales

Stability Theory for Dynamic Equations on Time Scales PDF Author: Anatoly A. Martynyuk
Publisher: Birkhäuser
ISBN: 3319422138
Category : Mathematics
Languages : en
Pages : 233

Get Book Here

Book Description
This monograph is a first in the world to present three approaches for stability analysis of solutions of dynamic equations. The first approach is based on the application of dynamic integral inequalities and the fundamental matrix of solutions of linear approximation of dynamic equations. The second is based on the generalization of the direct Lyapunovs method for equations on time scales, using scalar, vector and matrix-valued auxiliary functions. The third approach is the application of auxiliary functions (scalar, vector, or matrix-valued ones) in combination with differential dynamic inequalities. This is an alternative comparison method, developed for time continuous and time discrete systems.In recent decades, automatic control theory in the study of air- and spacecraft dynamics and in other areas of modern applied mathematics has encountered problems in the analysis of the behavior of solutions of time continuous-discrete linear and/or nonlinear equations of perturbed motion. In the book “Men of Mathematics,” 1937, E.T.Bell wrote: “A major task of mathematics today is to harmonize the continuous and the discrete, to include them in one comprehensive mathematics, and to eliminate obscurity from both.”Mathematical analysis on time scales accomplishes exactly this. This research has potential applications in such areas as theoretical and applied mechanics, neurodynamics, mathematical biology and finance among others.

Dynamic Equations on Time Scales and Applications

Dynamic Equations on Time Scales and Applications PDF Author: Ravi P Agarwal
Publisher: CRC Press
ISBN: 1040103731
Category : Mathematics
Languages : en
Pages : 435

Get Book Here

Book Description
This book presents the theory of dynamic equations on time scales and applications, providing an overview of recent developments in the foundations of the field as well as its applications. It discusses the recent results related to the qualitative properties of solutions like existence and uniqueness, stability, continuous dependence, controllability, oscillations, etc. Presents cutting-edge research trends of dynamic equations and recent advances in contemporary research on the topic of time scales Connects several new areas of dynamic equations on time scales with applications in different fields Includes mathematical explanation from the perspective of existing knowledge of dynamic equations on time scales Offers several new recently developed results, which are useful for the mathematical modeling of various phenomena Useful for several interdisciplinary fields like economics, biology, and population dynamics from the perspective of new trends The text is for postgraduate students, professionals, and academic researchers working in the fields of Applied Mathematics

Methods and Applications of Singular Perturbations

Methods and Applications of Singular Perturbations PDF Author: Ferdinand Verhulst
Publisher: Springer Science & Business Media
ISBN: 0387283137
Category : Mathematics
Languages : en
Pages : 332

Get Book Here

Book Description
Contains well-chosen examples and exercises A student-friendly introduction that follows a workbook type approach

Generalized Ordinary Differential Equations in Abstract Spaces and Applications

Generalized Ordinary Differential Equations in Abstract Spaces and Applications PDF Author: Everaldo M. Bonotto
Publisher: John Wiley & Sons
ISBN: 1119654939
Category : Mathematics
Languages : en
Pages : 514

Get Book Here

Book Description
GENERALIZED ORDINARY DIFFERENTIAL EQUATIONS IN ABSTRACT SPACES AND APPLICATIONS Explore a unified view of differential equations through the use of the generalized ODE from leading academics in mathematics Generalized Ordinary Differential Equations in Abstract Spaces and Applications delivers a comprehensive treatment of new results of the theory of Generalized ODEs in abstract spaces. The book covers applications to other types of differential equations, including Measure Functional Differential Equations (measure FDEs). It presents a uniform collection of qualitative results of Generalized ODEs and offers readers an introduction to several theories, including ordinary differential equations, impulsive differential equations, functional differential equations, dynamical equations on time scales, and more. Throughout the book, the focus is on qualitative theory and on corresponding results for other types of differential equations, as well as the connection between Generalized Ordinary Differential Equations and impulsive differential equations, functional differential equations, measure differential equations and dynamic equations on time scales. The book’s descriptions will be of use in many mathematical contexts, as well as in the social and natural sciences. Readers will also benefit from the inclusion of: A thorough introduction to regulated functions, including their basic properties, equiregulated sets, uniform convergence, and relatively compact sets An exploration of the Kurzweil integral, including its definitions and basic properties A discussion of measure functional differential equations, including impulsive measure FDEs The interrelationship between generalized ODEs and measure FDEs A treatment of the basic properties of generalized ODEs, including the existence and uniqueness of solutions, and prolongation and maximal solutions Perfect for researchers and graduate students in Differential Equations and Dynamical Systems, Generalized Ordinary Differential Equations in Abstract Spaces and App­lications will also earn a place in the libraries of advanced undergraduate students taking courses in the subject and hoping to move onto graduate studies.

Multiple Time Scales

Multiple Time Scales PDF Author: Jeremiah U. Brackbill
Publisher: Academic Press
ISBN: 1483257568
Category : Mathematics
Languages : en
Pages : 457

Get Book Here

Book Description
Multiple Time Scales presents various numerical methods for solving multiple-time-scale problems. The selection first elaborates on considerations on solving problems with multiple scales; problems with different time scales; and nonlinear normal-mode initialization of numerical weather prediction models. Discussions focus on analysis of observations, nonlinear analysis, systems of ordinary differential equations, and numerical methods for problems with multiple scales. The text then examines the diffusion-synthetic acceleration of transport iterations, with application to a radiation hydrodynamics problem and implicit methods in combustion and chemical kinetics modeling. The publication ponders on molecular dynamics and Monte Carlo simulations of rare events; direct implicit plasma simulation; orbit averaging and subcycling in particle simulation of plasmas; and hybrid and collisional implicit plasma simulation models. Topics include basic moment method, electron subcycling, gyroaveraged particle simulation, and the electromagnetic direct implicit method. The selection is a valuable reference for researchers interested in pursuing further research on the use of numerical methods in solving multiple-time-scale problems.

Boundary Value Problems on Time Scales, Volume I

Boundary Value Problems on Time Scales, Volume I PDF Author: Svetlin Georgiev
Publisher: CRC Press
ISBN: 9781032002934
Category : Mathematics
Languages : en
Pages : 0

Get Book Here

Book Description
This book is devoted to the qualitative theory of boundary value problems on time scales. It summarizes the most recent contributions in this area.