Author: William Duke
Publisher: American Mathematical Soc.
ISBN: 9780821843079
Category : Mathematics
Languages : en
Pages : 270
Book Description
Articles in this volume are based on talks given at the Gauss-Dirichlet Conference held in Gottingen on June 20-24, 2005. The conference commemorated the 150th anniversary of the death of C.-F. Gauss and the 200th anniversary of the birth of J.-L. Dirichlet. The volume begins with a definitive summary of the life and work of Dirichlet and continues with thirteen papers by leading experts on research topics of current interest in number theory that were directly influenced by Gauss and Dirichlet. Among the topics are the distribution of primes (long arithmetic progressions of primes and small gaps between primes), class groups of binary quadratic forms, various aspects of the theory of $L$-functions, the theory of modular forms, and the study of rational and integral solutions to polynomial equations in several variables. Information for our distributors: Titles in this series are co-published with the Clay Mathematics Institute (Cambridge, MA).
Analytic Number Theory
Author: William Duke
Publisher: American Mathematical Soc.
ISBN: 9780821843079
Category : Mathematics
Languages : en
Pages : 270
Book Description
Articles in this volume are based on talks given at the Gauss-Dirichlet Conference held in Gottingen on June 20-24, 2005. The conference commemorated the 150th anniversary of the death of C.-F. Gauss and the 200th anniversary of the birth of J.-L. Dirichlet. The volume begins with a definitive summary of the life and work of Dirichlet and continues with thirteen papers by leading experts on research topics of current interest in number theory that were directly influenced by Gauss and Dirichlet. Among the topics are the distribution of primes (long arithmetic progressions of primes and small gaps between primes), class groups of binary quadratic forms, various aspects of the theory of $L$-functions, the theory of modular forms, and the study of rational and integral solutions to polynomial equations in several variables. Information for our distributors: Titles in this series are co-published with the Clay Mathematics Institute (Cambridge, MA).
Publisher: American Mathematical Soc.
ISBN: 9780821843079
Category : Mathematics
Languages : en
Pages : 270
Book Description
Articles in this volume are based on talks given at the Gauss-Dirichlet Conference held in Gottingen on June 20-24, 2005. The conference commemorated the 150th anniversary of the death of C.-F. Gauss and the 200th anniversary of the birth of J.-L. Dirichlet. The volume begins with a definitive summary of the life and work of Dirichlet and continues with thirteen papers by leading experts on research topics of current interest in number theory that were directly influenced by Gauss and Dirichlet. Among the topics are the distribution of primes (long arithmetic progressions of primes and small gaps between primes), class groups of binary quadratic forms, various aspects of the theory of $L$-functions, the theory of modular forms, and the study of rational and integral solutions to polynomial equations in several variables. Information for our distributors: Titles in this series are co-published with the Clay Mathematics Institute (Cambridge, MA).
Analytic Number Theory
Author: Henryk Iwaniec
Publisher: American Mathematical Soc.
ISBN: 1470467704
Category : Education
Languages : en
Pages : 615
Book Description
Analytic Number Theory distinguishes itself by the variety of tools it uses to establish results. One of the primary attractions of this theory is its vast diversity of concepts and methods. The main goals of this book are to show the scope of the theory, both in classical and modern directions, and to exhibit its wealth and prospects, beautiful theorems, and powerful techniques. The book is written with graduate students in mind, and the authors nicely balance clarity, completeness, and generality. The exercises in each section serve dual purposes, some intended to improve readers' understanding of the subject and others providing additional information. Formal prerequisites for the major part of the book do not go beyond calculus, complex analysis, integration, and Fourier series and integrals. In later chapters automorphic forms become important, with much of the necessary information about them included in two survey chapters.
Publisher: American Mathematical Soc.
ISBN: 1470467704
Category : Education
Languages : en
Pages : 615
Book Description
Analytic Number Theory distinguishes itself by the variety of tools it uses to establish results. One of the primary attractions of this theory is its vast diversity of concepts and methods. The main goals of this book are to show the scope of the theory, both in classical and modern directions, and to exhibit its wealth and prospects, beautiful theorems, and powerful techniques. The book is written with graduate students in mind, and the authors nicely balance clarity, completeness, and generality. The exercises in each section serve dual purposes, some intended to improve readers' understanding of the subject and others providing additional information. Formal prerequisites for the major part of the book do not go beyond calculus, complex analysis, integration, and Fourier series and integrals. In later chapters automorphic forms become important, with much of the necessary information about them included in two survey chapters.
Surveys in Number Theory
Author: Bruce Berndt
Publisher: CRC Press
ISBN: 1000065286
Category : Mathematics
Languages : en
Pages : 372
Book Description
This volume, based on fourteen papers from the Millennial Conference on Number Theory, represents surveys of topics in number theory and provides an outlook into the future of number theory research. It serves as an inspiration to graduate students and as a reference for research mathematicians.
Publisher: CRC Press
ISBN: 1000065286
Category : Mathematics
Languages : en
Pages : 372
Book Description
This volume, based on fourteen papers from the Millennial Conference on Number Theory, represents surveys of topics in number theory and provides an outlook into the future of number theory research. It serves as an inspiration to graduate students and as a reference for research mathematicians.
Analytic Number Theory:The Halberstam Festschrift 2
Author: Bruce C. Berndt
Publisher: Springer Science & Business Media
ISBN: 9780817639334
Category : Mathematics
Languages : en
Pages : 464
Book Description
The second of two volumes presenting papers from an international conference on analytic number theory. The two volumes contain 50 papers, with an emphasis on topics such as sieves, related combinatorial aspects, multiplicative number theory, additive number theory, and Riemann zeta-function.
Publisher: Springer Science & Business Media
ISBN: 9780817639334
Category : Mathematics
Languages : en
Pages : 464
Book Description
The second of two volumes presenting papers from an international conference on analytic number theory. The two volumes contain 50 papers, with an emphasis on topics such as sieves, related combinatorial aspects, multiplicative number theory, additive number theory, and Riemann zeta-function.
Mathematical Reviews
Author:
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 984
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 984
Book Description
Opera de Cribro
Author: John B. Friedlander
Publisher: American Mathematical Soc.
ISBN: 0821849700
Category : Mathematics
Languages : en
Pages : 554
Book Description
This is a true masterpiece that will prove to be indispensable to the serious researcher for many years to come. --Enrico Bombieri, Institute for Advanced Study This is a truly comprehensive account of sieves and their applications, by two of the world's greatest authorities. Beginners will find a thorough introduction to the subject, with plenty of helpful motivation. The more practised reader will appreciate the authors' insights into some of the more mysterious parts of the theory, as well as the wealth of new examples. --Roger Heath-Brown, University of Oxford, Fellow of Royal Society This is a comprehensive and up-to-date treatment of sieve methods. The theory of the sieve is developed thoroughly with complete and accessible proofs of the basic theorems. Included is a wide range of applications, both to traditional questions such as those concerning primes, and to areas previously unexplored by sieve methods, such as elliptic curves, points on cubic surfaces and quantum ergodicity. New proofs are given also of some of the central theorems of analytic number theory; these proofs emphasize and take advantage of the applicability of sieve ideas. The book contains numerous comments which provide the reader with insight into the workings of the subject, both as to what the sieve can do and what it cannot do. The authors reveal recent developements by which the parity barrier can be breached, exposing golden nuggets of the subject, previously inaccessible. The variety in the topics covered and in the levels of difficulty encountered makes this a work of value to novices and experts alike, both as an educational tool and a basic reference.
Publisher: American Mathematical Soc.
ISBN: 0821849700
Category : Mathematics
Languages : en
Pages : 554
Book Description
This is a true masterpiece that will prove to be indispensable to the serious researcher for many years to come. --Enrico Bombieri, Institute for Advanced Study This is a truly comprehensive account of sieves and their applications, by two of the world's greatest authorities. Beginners will find a thorough introduction to the subject, with plenty of helpful motivation. The more practised reader will appreciate the authors' insights into some of the more mysterious parts of the theory, as well as the wealth of new examples. --Roger Heath-Brown, University of Oxford, Fellow of Royal Society This is a comprehensive and up-to-date treatment of sieve methods. The theory of the sieve is developed thoroughly with complete and accessible proofs of the basic theorems. Included is a wide range of applications, both to traditional questions such as those concerning primes, and to areas previously unexplored by sieve methods, such as elliptic curves, points on cubic surfaces and quantum ergodicity. New proofs are given also of some of the central theorems of analytic number theory; these proofs emphasize and take advantage of the applicability of sieve ideas. The book contains numerous comments which provide the reader with insight into the workings of the subject, both as to what the sieve can do and what it cannot do. The authors reveal recent developements by which the parity barrier can be breached, exposing golden nuggets of the subject, previously inaccessible. The variety in the topics covered and in the levels of difficulty encountered makes this a work of value to novices and experts alike, both as an educational tool and a basic reference.
Analytic Number Theory
Author: Bruce C. Berndt
Publisher: Springer Science & Business Media
ISBN: 1461240867
Category : Mathematics
Languages : en
Pages : 453
Book Description
On May 16 -20, 1995, approximately 150 mathematicians gathered at the Conference Center of the University of Illinois at Allerton Park for an Inter national Conference on Analytic Number Theory. The meeting marked the approaching official retirement of Heini Halberstam from the mathematics fac ulty of the University of Illinois at Urbana-Champaign. Professor Halberstam has been at the University since 1980, for 8 years as head of the Department of Mathematics, and has been a leading researcher and teacher in number theory for over forty years. The program included invited one hour lectures by G. Andrews, J. Bour gain, J. M. Deshouillers, H. Halberstam, D. R. Heath-Brown, H. Iwaniec, H. L. Montgomery, R. Murty, C. Pomerance, and R. C. Vaughan, and almost one hundred other talks of varying lengths. These volumes comprise contributions from most of the principal speakers and from many of the other participants, as well as some papers from mathematicians who were unable to attend. The contents span a broad range of themes from contemporary number theory, with the majority having an analytic flavor.
Publisher: Springer Science & Business Media
ISBN: 1461240867
Category : Mathematics
Languages : en
Pages : 453
Book Description
On May 16 -20, 1995, approximately 150 mathematicians gathered at the Conference Center of the University of Illinois at Allerton Park for an Inter national Conference on Analytic Number Theory. The meeting marked the approaching official retirement of Heini Halberstam from the mathematics fac ulty of the University of Illinois at Urbana-Champaign. Professor Halberstam has been at the University since 1980, for 8 years as head of the Department of Mathematics, and has been a leading researcher and teacher in number theory for over forty years. The program included invited one hour lectures by G. Andrews, J. Bour gain, J. M. Deshouillers, H. Halberstam, D. R. Heath-Brown, H. Iwaniec, H. L. Montgomery, R. Murty, C. Pomerance, and R. C. Vaughan, and almost one hundred other talks of varying lengths. These volumes comprise contributions from most of the principal speakers and from many of the other participants, as well as some papers from mathematicians who were unable to attend. The contents span a broad range of themes from contemporary number theory, with the majority having an analytic flavor.
Non-Archimedean L-Functions
Author: Alexei A. Panchishkin
Publisher: Springer
ISBN: 3662215411
Category : Mathematics
Languages : en
Pages : 167
Book Description
1) p n=1 The set of arguments s for which ((s) is defined can be extended to all s E C,s :f:. 1, and we may regard C as the group of all continuous quasicharacters C = Hom(R~, c>
Publisher: Springer
ISBN: 3662215411
Category : Mathematics
Languages : en
Pages : 167
Book Description
1) p n=1 The set of arguments s for which ((s) is defined can be extended to all s E C,s :f:. 1, and we may regard C as the group of all continuous quasicharacters C = Hom(R~, c>
Computational Aspects of Modular Forms and Galois Representations
Author: Bas Edixhoven
Publisher: Princeton University Press
ISBN: 0691142017
Category : Mathematics
Languages : en
Pages : 438
Book Description
Modular forms are tremendously important in various areas of mathematics, from number theory and algebraic geometry to combinatorics and lattices. Their Fourier coefficients, with Ramanujan's tau-function as a typical example, have deep arithmetic significance. Prior to this book, the fastest known algorithms for computing these Fourier coefficients took exponential time, except in some special cases. The case of elliptic curves (Schoof's algorithm) was at the birth of elliptic curve cryptography around 1985. This book gives an algorithm for computing coefficients of modular forms of level one in polynomial time. For example, Ramanujan's tau of a prime number p can be computed in time bounded by a fixed power of the logarithm of p. Such fast computation of Fourier coefficients is itself based on the main result of the book: the computation, in polynomial time, of Galois representations over finite fields attached to modular forms by the Langlands program. Because these Galois representations typically have a nonsolvable image, this result is a major step forward from explicit class field theory, and it could be described as the start of the explicit Langlands program. The computation of the Galois representations uses their realization, following Shimura and Deligne, in the torsion subgroup of Jacobian varieties of modular curves. The main challenge is then to perform the necessary computations in time polynomial in the dimension of these highly nonlinear algebraic varieties. Exact computations involving systems of polynomial equations in many variables take exponential time. This is avoided by numerical approximations with a precision that suffices to derive exact results from them. Bounds for the required precision--in other words, bounds for the height of the rational numbers that describe the Galois representation to be computed--are obtained from Arakelov theory. Two types of approximations are treated: one using complex uniformization and another one using geometry over finite fields. The book begins with a concise and concrete introduction that makes its accessible to readers without an extensive background in arithmetic geometry. And the book includes a chapter that describes actual computations.
Publisher: Princeton University Press
ISBN: 0691142017
Category : Mathematics
Languages : en
Pages : 438
Book Description
Modular forms are tremendously important in various areas of mathematics, from number theory and algebraic geometry to combinatorics and lattices. Their Fourier coefficients, with Ramanujan's tau-function as a typical example, have deep arithmetic significance. Prior to this book, the fastest known algorithms for computing these Fourier coefficients took exponential time, except in some special cases. The case of elliptic curves (Schoof's algorithm) was at the birth of elliptic curve cryptography around 1985. This book gives an algorithm for computing coefficients of modular forms of level one in polynomial time. For example, Ramanujan's tau of a prime number p can be computed in time bounded by a fixed power of the logarithm of p. Such fast computation of Fourier coefficients is itself based on the main result of the book: the computation, in polynomial time, of Galois representations over finite fields attached to modular forms by the Langlands program. Because these Galois representations typically have a nonsolvable image, this result is a major step forward from explicit class field theory, and it could be described as the start of the explicit Langlands program. The computation of the Galois representations uses their realization, following Shimura and Deligne, in the torsion subgroup of Jacobian varieties of modular curves. The main challenge is then to perform the necessary computations in time polynomial in the dimension of these highly nonlinear algebraic varieties. Exact computations involving systems of polynomial equations in many variables take exponential time. This is avoided by numerical approximations with a precision that suffices to derive exact results from them. Bounds for the required precision--in other words, bounds for the height of the rational numbers that describe the Galois representation to be computed--are obtained from Arakelov theory. Two types of approximations are treated: one using complex uniformization and another one using geometry over finite fields. The book begins with a concise and concrete introduction that makes its accessible to readers without an extensive background in arithmetic geometry. And the book includes a chapter that describes actual computations.
A First Course in Modular Forms
Author: Fred Diamond
Publisher: Springer Science & Business Media
ISBN: 0387272267
Category : Mathematics
Languages : en
Pages : 462
Book Description
This book introduces the theory of modular forms, from which all rational elliptic curves arise, with an eye toward the Modularity Theorem. Discussion covers elliptic curves as complex tori and as algebraic curves; modular curves as Riemann surfaces and as algebraic curves; Hecke operators and Atkin-Lehner theory; Hecke eigenforms and their arithmetic properties; the Jacobians of modular curves and the Abelian varieties associated to Hecke eigenforms. As it presents these ideas, the book states the Modularity Theorem in various forms, relating them to each other and touching on their applications to number theory. The authors assume no background in algebraic number theory and algebraic geometry. Exercises are included.
Publisher: Springer Science & Business Media
ISBN: 0387272267
Category : Mathematics
Languages : en
Pages : 462
Book Description
This book introduces the theory of modular forms, from which all rational elliptic curves arise, with an eye toward the Modularity Theorem. Discussion covers elliptic curves as complex tori and as algebraic curves; modular curves as Riemann surfaces and as algebraic curves; Hecke operators and Atkin-Lehner theory; Hecke eigenforms and their arithmetic properties; the Jacobians of modular curves and the Abelian varieties associated to Hecke eigenforms. As it presents these ideas, the book states the Modularity Theorem in various forms, relating them to each other and touching on their applications to number theory. The authors assume no background in algebraic number theory and algebraic geometry. Exercises are included.