DISRUPTION MITIGATION USING HIGH-PRESSURE NOBLE GAS INJECTION ON DIII-D.

DISRUPTION MITIGATION USING HIGH-PRESSURE NOBLE GAS INJECTION ON DIII-D. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
High-pressure gas jet injection of neon and argon is used to mitigate the deleterious effects from tokamak disruptions. Thermal loading of the divertor surfaces, vessel stress from poloidal halo currents and the buildup and loss of relativistic electrons to the wall are all greatly reduced or eliminated. The gas jet penetrates through to the central plasma as a neutral species at its sonic velocity[approx] 300-500 m/s. The injected impurity species radiate> 95% of the plasma stored energy, accompanied by a 500-fold increase the total electron inventory in the plasma volume, thus decreasing localized heating at the divertor targets. The poloidal halo currents at the wall are reduced because of the rapid cooling and the slow movement of the plasma toward the wall during the current quench. When a sufficient quantity of gas is injected, the extremely large total (free+ bound) electron density inhibits runaway electrons in the current quench, as predicted. A physical model of radiative cooling has been developed and is validated against DIII-D experiments. The model shows that gas jet mitigation, including runaway suppression, extrapolates favorably to burning plasmas where disruption damage would be more severe. The use of real-time detection of the onset of a disruption to trigger massive gas injection and to mitigate the ensuing damage is demonstrated.

DISRUPTION MITIGATION USING HIGH-PRESSURE NOBLE GAS INJECTION ON DIII-D.

DISRUPTION MITIGATION USING HIGH-PRESSURE NOBLE GAS INJECTION ON DIII-D. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
High-pressure gas jet injection of neon and argon is used to mitigate the deleterious effects from tokamak disruptions. Thermal loading of the divertor surfaces, vessel stress from poloidal halo currents and the buildup and loss of relativistic electrons to the wall are all greatly reduced or eliminated. The gas jet penetrates through to the central plasma as a neutral species at its sonic velocity[approx] 300-500 m/s. The injected impurity species radiate> 95% of the plasma stored energy, accompanied by a 500-fold increase the total electron inventory in the plasma volume, thus decreasing localized heating at the divertor targets. The poloidal halo currents at the wall are reduced because of the rapid cooling and the slow movement of the plasma toward the wall during the current quench. When a sufficient quantity of gas is injected, the extremely large total (free+ bound) electron density inhibits runaway electrons in the current quench, as predicted. A physical model of radiative cooling has been developed and is validated against DIII-D experiments. The model shows that gas jet mitigation, including runaway suppression, extrapolates favorably to burning plasmas where disruption damage would be more severe. The use of real-time detection of the onset of a disruption to trigger massive gas injection and to mitigate the ensuing damage is demonstrated.

DISRUPTION MITIGATION WITH HIGH-PRESSURE NOBLE GAS INJECTION.

DISRUPTION MITIGATION WITH HIGH-PRESSURE NOBLE GAS INJECTION. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 20

Get Book Here

Book Description
OAK A271 DISRUPTION MITIGATION WITH HIGH-PRESSURE NOBLE GAS INJECTION. High-pressure gas jets of neon and argon are used to mitigate the three principal damaging effects of tokamak disruptions: thermal loading of the divertor surfaces, vessel stress from poloidal halo currents and the buildup and loss of relativistic electrons to the wall. The gas jet penetrates as a neutral species through to the central plasma at its sonic velocity. The injected gas atoms increase up to 500 times the total electron inventory in the plasma volume, resulting in a relatively benign radiative dissipation of>95% of the plasma stored energy. The rapid cooling and the slow movement of the plasma to the wall reduce poloidal halo currents during the current decay. The thermally collapsed plasma is very cold ((almost equal to) 1-2 eV) and the impurity charge distribution can include> 50% fraction neutral species. If a sufficient quantity of gas is injected, the neutrals inhibit runaway electrons. A physical model of radiative cooling is developed and validated against DIII-D experiments. The model shows that gas jet mitigation, including runaway suppression, extrapolates favorably to burning plasmas where disruption damage will be more severe. Initial results of real-time disruption detection triggering gas jet injection for mitigation are shown.

Xiu xiang ju xian zhen gu ci

Xiu xiang ju xian zhen gu ci PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Burning Plasma

Burning Plasma PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309166918
Category : Science
Languages : en
Pages : 208

Get Book Here

Book Description
Significant advances have been made in fusion science, and a point has been reached when we need to decide if the United States is ready to begin a burning plasma experiment. A burning plasmaâ€"in which at least 50 percent of the energy to drive the fusion reaction is generated internallyâ€"is an essential step to reach the goal of fusion power generation. The Burning Plasma Assessment Committee was formed to provide advice on this decision. The committee concluded that there is high confidence in the readiness to proceed with the burning plasma step. The International Thermonuclear Experimental Reactor (ITER), with the United States as a significant partner, was the best choice. Once a commitment to ITER is made, fulfilling it should become the highest priority of the U.S. fusion research program. A funding trajectory is required that both captures the benefits of joining ITER and retains a strong scientific focus on the long-range goals of the program. Addition of the ITER project will require that the content, scope, and level of U.S. fusion activity be defined by program balancing through a priority-setting process initiated by the Office of Fusion Energy Science.

Self-consistent Modeling of Plasma Response to Impurity Spreading from Intense Localized Source

Self-consistent Modeling of Plasma Response to Impurity Spreading from Intense Localized Source PDF Author: Mikhail Koltunov
Publisher: Forschungszentrum Jülich
ISBN: 3893368280
Category :
Languages : en
Pages : 131

Get Book Here

Book Description


Systems Approaches to Nuclear Fusion Reactors

Systems Approaches to Nuclear Fusion Reactors PDF Author: Frederick B. Marcus
Publisher: Springer Nature
ISBN: 3031177118
Category : Science
Languages : en
Pages : 484

Get Book Here

Book Description
This book offers an overall review, applying systems engineering and architecture approaches, of the design, optimization, operation and results of leading fusion experiments. These approaches provide a unified means of evaluating reactor design. Methodologies are developed for more coherent construction or evaluation of fusion devices, associated experiments and operating procedures. The main focus is on tokamaks, with almost all machines and their important results being integrated into a systems design space. Case studies focus on DIII-D, TCV, JET, WEST, the fusion reactor prototype ITER and the EU DEMO concept. Stellarator, Mirror and Laser inertial confinement experiments are similarly analysed, including reactor implications of breakeven at NIF. The book examines the engineering and physics design and optimization process for each machine, analysing their performance and major results achieved, thus establishing a basis for the improvement of future machines. The reader will gain a broad historical and up-to-date perspective of the status of nuclear fusion research from both an engineering and physics point of view. Explanations are given of the computational tools needed to design and operate successful experiments and reactor-relevant machines. This book is aimed at both graduate students and practitioners of nuclear fusion science and engineering, as well as those specializing in other fields demanding large and integrated experimental equipment. Systems engineers will obtain valuable insights into fusion applications. References are given to associated complex mathematical derivations, which are beyond the scope of this book. The general reader interested in nuclear fusion will find here an accessible summary of the current state of nuclear fusion.

Nuclear Fusion

Nuclear Fusion PDF Author:
Publisher:
ISBN:
Category : Nuclear fusion
Languages : en
Pages : 332

Get Book Here

Book Description


Comprehensive Nuclear Materials

Comprehensive Nuclear Materials PDF Author: Todd R Allen
Publisher: Elsevier
ISBN: 0080560334
Category : Technology & Engineering
Languages : en
Pages : 3552

Get Book Here

Book Description
Comprehensive Nuclear Materials, Five Volume Set discusses the major classes of materials suitable for usage in nuclear fission, fusion reactors and high power accelerators, and for diverse functions in fuels, cladding, moderator and control materials, structural, functional, and waste materials. The work addresses the full panorama of contemporary international research in nuclear materials, from Actinides to Zirconium alloys, from the worlds' leading scientists and engineers. Critically reviews the major classes and functions of materials, supporting the selection, assessment, validation and engineering of materials in extreme nuclear environment Fully integrated with F-elements.net, a proprietary database containing useful cross-referenced property data on the lanthanides and actinides Details contemporary developments in numerical simulation, modelling, experimentation, and computational analysis, for effective implementation in labs and plants

Nuclear Fusion Programme: Annual Report of the Association Karlsruhe Institute of Technology/EURATOM ; January 2012 - December 2012

Nuclear Fusion Programme: Annual Report of the Association Karlsruhe Institute of Technology/EURATOM ; January 2012 - December 2012 PDF Author: Pleli, Ingrid
Publisher: KIT Scientific Publishing
ISBN:
Category :
Languages : en
Pages : 536

Get Book Here

Book Description


Magnetic Fusion Energy

Magnetic Fusion Energy PDF Author: George Neilson
Publisher: Woodhead Publishing
ISBN: 0081003269
Category : Science
Languages : en
Pages : 634

Get Book Here

Book Description
Magnetic Fusion Energy: From Experiments to Power Plants is a timely exploration of the field, giving readers an understanding of the experiments that brought us to the threshold of the ITER era, as well as the physics and technology research needed to take us beyond ITER to commercial fusion power plants. With the start of ITER construction, the world's magnetic fusion energy (MFE) enterprise has begun a new era. The ITER scientific and technical (S&T) basis is the result of research on many fusion plasma physics experiments over a period of decades. Besides ITER, the scope of fusion research must be broadened to create the S&T basis for practical fusion power plants, systems that will continuously convert the energy released from a burning plasma to usable electricity, operating for years with only occasional interruptions for scheduled maintenance. - Provides researchers in academia and industry with an authoritative overview of the significant fusion energy experiments - Considers the pathway towards future development of magnetic fusion energy power plants - Contains experts contributions from editors and others who are well known in the field