Author: Brian Berkowitz
Publisher: Springer Science & Business Media
ISBN: 9401712786
Category : Science
Languages : en
Pages : 261
Book Description
In spite of many years of intensive study, our current abilities to quantify and predict contaminant migration in natural geological formations remain severely limited. The heterogeneity of these formations over a wide range of scales necessitates consideration of sophisticated transport theories. The evolution of such theories has escalated to the point that a review of the subject seems timely. While conceptual and mathematical developments were crucial to the introduction of these new approaches, there are now too many publications that contain theoretical abstractions without regard to real systems, or incremental improvements to existing theories which are known not to be applicable. This volume brings together articles representing a broad spectrum of state-of-the-art approaches for characterization and quantification of contaminant dispersion in heterogeneous porous media. Audience: The contributions are intended to be as accessible as possible to a wide readership of academics and professionals with diverse backgrounds such as earth sciences, subsurface hydrology, petroleum engineering, and soil physics.
Dispersion in Heterogeneous Geological Formations
Author: Brian Berkowitz
Publisher: Springer Science & Business Media
ISBN: 9401712786
Category : Science
Languages : en
Pages : 261
Book Description
In spite of many years of intensive study, our current abilities to quantify and predict contaminant migration in natural geological formations remain severely limited. The heterogeneity of these formations over a wide range of scales necessitates consideration of sophisticated transport theories. The evolution of such theories has escalated to the point that a review of the subject seems timely. While conceptual and mathematical developments were crucial to the introduction of these new approaches, there are now too many publications that contain theoretical abstractions without regard to real systems, or incremental improvements to existing theories which are known not to be applicable. This volume brings together articles representing a broad spectrum of state-of-the-art approaches for characterization and quantification of contaminant dispersion in heterogeneous porous media. Audience: The contributions are intended to be as accessible as possible to a wide readership of academics and professionals with diverse backgrounds such as earth sciences, subsurface hydrology, petroleum engineering, and soil physics.
Publisher: Springer Science & Business Media
ISBN: 9401712786
Category : Science
Languages : en
Pages : 261
Book Description
In spite of many years of intensive study, our current abilities to quantify and predict contaminant migration in natural geological formations remain severely limited. The heterogeneity of these formations over a wide range of scales necessitates consideration of sophisticated transport theories. The evolution of such theories has escalated to the point that a review of the subject seems timely. While conceptual and mathematical developments were crucial to the introduction of these new approaches, there are now too many publications that contain theoretical abstractions without regard to real systems, or incremental improvements to existing theories which are known not to be applicable. This volume brings together articles representing a broad spectrum of state-of-the-art approaches for characterization and quantification of contaminant dispersion in heterogeneous porous media. Audience: The contributions are intended to be as accessible as possible to a wide readership of academics and professionals with diverse backgrounds such as earth sciences, subsurface hydrology, petroleum engineering, and soil physics.
Dispersion in Heterogeneous Geological Formations
Author: Brian Berkowitz
Publisher:
ISBN: 9789401712798
Category :
Languages : en
Pages : 272
Book Description
Publisher:
ISBN: 9789401712798
Category :
Languages : en
Pages : 272
Book Description
Mathematical Geoenergy
Author: Paul Pukite
Publisher: John Wiley & Sons
ISBN: 1119434297
Category : Science
Languages : en
Pages : 373
Book Description
A rigorous mathematical problem-solving framework for analyzing the Earth’s energy resources GeoEnergy encompasses the range of energy technologies and sources that interact with the geological subsurface. Fossil fuel availability studies have historically lacked concise modeling, tending instead toward heuristics and overly-complex processes. Mathematical GeoEnergy: Oil Discovery, Depletion and Renewal details leading-edge research based on a mathematically-oriented approach to geoenergy analysis. Volume highlights include: Applies a formal mathematical framework to oil discovery, depletion, and analysis Employs first-order applied physics modeling, decreasing computational resource requirements Illustrates model interpolation and extrapolation to fill out missing or indeterminate data Covers both stochastic and deterministic mathematical processes for historical analysis and prediction Emphasizes the importance of up-to-date data, accessed through the companion website Demonstrates the advantages of mathematical modeling over conventional heuristic and empirical approaches Accurately analyzes the past and predicts the future of geoenergy depletion and renewal using models derived from observed production data Intuitive mathematical models and readily available algorithms make Mathematical GeoEnergy: Oil Discovery, Depletion and Renewal an insightful and invaluable resource for scientists and engineers using robust statistical and analytical tools applicable to oil discovery, reservoir sizing, dispersion, production models, reserve growth, and more.
Publisher: John Wiley & Sons
ISBN: 1119434297
Category : Science
Languages : en
Pages : 373
Book Description
A rigorous mathematical problem-solving framework for analyzing the Earth’s energy resources GeoEnergy encompasses the range of energy technologies and sources that interact with the geological subsurface. Fossil fuel availability studies have historically lacked concise modeling, tending instead toward heuristics and overly-complex processes. Mathematical GeoEnergy: Oil Discovery, Depletion and Renewal details leading-edge research based on a mathematically-oriented approach to geoenergy analysis. Volume highlights include: Applies a formal mathematical framework to oil discovery, depletion, and analysis Employs first-order applied physics modeling, decreasing computational resource requirements Illustrates model interpolation and extrapolation to fill out missing or indeterminate data Covers both stochastic and deterministic mathematical processes for historical analysis and prediction Emphasizes the importance of up-to-date data, accessed through the companion website Demonstrates the advantages of mathematical modeling over conventional heuristic and empirical approaches Accurately analyzes the past and predicts the future of geoenergy depletion and renewal using models derived from observed production data Intuitive mathematical models and readily available algorithms make Mathematical GeoEnergy: Oil Discovery, Depletion and Renewal an insightful and invaluable resource for scientists and engineers using robust statistical and analytical tools applicable to oil discovery, reservoir sizing, dispersion, production models, reserve growth, and more.
Parameter Estimation and Uncertainty Quantification in Water Resources Modeling
Author: Philippe Renard
Publisher: Frontiers Media SA
ISBN: 2889636747
Category :
Languages : en
Pages : 177
Book Description
Numerical models of flow and transport processes are heavily employed in the fields of surface, soil, and groundwater hydrology. They are used to interpret field observations, analyze complex and coupled processes, or to support decision making related to large societal issues such as the water-energy nexus or sustainable water management and food production. Parameter estimation and uncertainty quantification are two key features of modern science-based predictions. When applied to water resources, these tasks must cope with many degrees of freedom and large datasets. Both are challenging and require novel theoretical and computational approaches to handle complex models with large number of unknown parameters.
Publisher: Frontiers Media SA
ISBN: 2889636747
Category :
Languages : en
Pages : 177
Book Description
Numerical models of flow and transport processes are heavily employed in the fields of surface, soil, and groundwater hydrology. They are used to interpret field observations, analyze complex and coupled processes, or to support decision making related to large societal issues such as the water-energy nexus or sustainable water management and food production. Parameter estimation and uncertainty quantification are two key features of modern science-based predictions. When applied to water resources, these tasks must cope with many degrees of freedom and large datasets. Both are challenging and require novel theoretical and computational approaches to handle complex models with large number of unknown parameters.
Flow in Porous Rocks
Author: Andrew W. Woods
Publisher: Cambridge University Press
ISBN: 1107065852
Category : Business & Economics
Languages : en
Pages : 301
Book Description
This book provides simplified models explaining flows in heterogeneous rocks, their physics and energy production processes, for researchers, energy industry professionals and graduate students.
Publisher: Cambridge University Press
ISBN: 1107065852
Category : Business & Economics
Languages : en
Pages : 301
Book Description
This book provides simplified models explaining flows in heterogeneous rocks, their physics and energy production processes, for researchers, energy industry professionals and graduate students.
Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2016
Author: Marco L. Bittencourt
Publisher: Springer
ISBN: 3319658700
Category : Mathematics
Languages : en
Pages : 681
Book Description
This book features a selection of high-quality papers chosen from the best presentations at the International Conference on Spectral and High-Order Methods (2016), offering an overview of the depth and breadth of the activities within this important research area. The carefully reviewed papers provide a snapshot of the state of the art, while the extensive bibliography helps initiate new research directions.
Publisher: Springer
ISBN: 3319658700
Category : Mathematics
Languages : en
Pages : 681
Book Description
This book features a selection of high-quality papers chosen from the best presentations at the International Conference on Spectral and High-Order Methods (2016), offering an overview of the depth and breadth of the activities within this important research area. The carefully reviewed papers provide a snapshot of the state of the art, while the extensive bibliography helps initiate new research directions.
geoENV I — Geostatistics for Environmental Applications
Author: A.O. Soares
Publisher: Springer Science & Business Media
ISBN: 9401716757
Category : Science
Languages : en
Pages : 501
Book Description
GeoENV96, the First European Conference on Geostatistics for Environmental Applications held in Lisbon, was conceived to bring together researchers, mostly from, but not limited to Europe, working on environmental issues approached by geostatistical methods. Papers were attracted from fields as diverse as hydrogeology. biology, soil sciences, air pollution or ecology. It is clear that there is a lot of activity on geostatistics for environmental applications as the collection of papers in this book reveals. GeoENV96 was successful in the number and quality of the papers presented which surpassed the initial expectations. There is still a large dispersion on the level of application of geostatistics in the different areas. To help in spreading the most novel applications of geostatistics across disciplines and to discuss the specific problems related to the application of geostatistics to environmental applications, geoENV96 is intended to set the pace and to be the first of a series of biennial meetings. The pace is set, now let us wait for geoENV98. Lisbon, November 1996 The Executive Committee: Jaime Gomez-Hernandez Roland Froidevaux Amflcar Soares TABLE OF CONTENTS Foreword .................................................. Vll Hydrology, Groundwater, Groundwater Contaminantion Equivalent Transmissivities in Heterogeneous Porous Media under Radially Convergent Flow X. Sanchez-Vila, c.L. Axness and J. Carrera .......................... .
Publisher: Springer Science & Business Media
ISBN: 9401716757
Category : Science
Languages : en
Pages : 501
Book Description
GeoENV96, the First European Conference on Geostatistics for Environmental Applications held in Lisbon, was conceived to bring together researchers, mostly from, but not limited to Europe, working on environmental issues approached by geostatistical methods. Papers were attracted from fields as diverse as hydrogeology. biology, soil sciences, air pollution or ecology. It is clear that there is a lot of activity on geostatistics for environmental applications as the collection of papers in this book reveals. GeoENV96 was successful in the number and quality of the papers presented which surpassed the initial expectations. There is still a large dispersion on the level of application of geostatistics in the different areas. To help in spreading the most novel applications of geostatistics across disciplines and to discuss the specific problems related to the application of geostatistics to environmental applications, geoENV96 is intended to set the pace and to be the first of a series of biennial meetings. The pace is set, now let us wait for geoENV98. Lisbon, November 1996 The Executive Committee: Jaime Gomez-Hernandez Roland Froidevaux Amflcar Soares TABLE OF CONTENTS Foreword .................................................. Vll Hydrology, Groundwater, Groundwater Contaminantion Equivalent Transmissivities in Heterogeneous Porous Media under Radially Convergent Flow X. Sanchez-Vila, c.L. Axness and J. Carrera .......................... .
Fractals
Author: Behzad Ghanbarian
Publisher: CRC Press
ISBN: 1498748724
Category : Mathematics
Languages : en
Pages : 364
Book Description
This book provides theoretical concepts and applications of fractals and multifractals to a broad range of audiences from various scientific communities, such as petroleum, chemical, civil and environmental engineering, atmospheric research, and hydrology. In the first chapter, we introduce fractals and multifractals from physics and math viewpoints. We then discuss theory and practical applications in detail. In what follows, in chapter 2, fragmentation process is modeled using fractals. Fragmentation is the breaking of aggregates into smaller pieces or fragments, a typical phenomenon in nature. In chapter 3, the advantages and disadvantages of two- and three-phase fractal models are discussed in detail. These two kinds of approach have been widely applied in the literature to model different characteristics of natural phenomena. In chapter 4, two- and three-phase fractal techniques are used to develop capillary pressure curve models, which characterize pore-size distribution of porous media. Percolation theory provides a theoretical framework to model flow and transport in disordered networks and systems. Therefore, following chapter 4, in chapter 5 the fractal basis of percolation theory and its applications in surface and subsurface hydrology are discussed. In chapter 6, fracture networks are shown to be modeled using fractal approaches. Chapter 7 provides different applications of fractals and multifractals to petrophysics and relevant area in petroleum engineering. In chapter 8, we introduce the practical advantages of fractals and multifractals in geostatistics at large scales, which have broad applications in stochastic hydrology and hydrogeology. Multifractals have been also widely applied to model atmospheric characteristics, such as precipitation, temperature, and cloud shape. In chapter 9, these kinds of properties are addressed using multifractals. At watershed scales, river networks have been shown to follow fractal behavior. Therefore, the applications of fractals are addressed in chapter 10. Time series analysis has been under investigations for several decades in physics, hydrology, atmospheric research, civil engineering, and water resources. In chapter 11, we therefore, provide fractal, multifractal, multifractal detrended fluctuation analyses, which can be used to study temporal characterization of a phenomenon, such as flow discharge at a specific location of a river. Chapter 12 addresses signals and again time series using a novel fractal Fourier analysis. In chapter 13, we discuss constructal theory, which has a perspective opposite to fractal theories, and is based on optimizationof diffusive exchange. In the case of river drainages, for example, the constructal approach begins at the divide and generates headwater streams first, rather than starting from the fundamental drainage pattern.
Publisher: CRC Press
ISBN: 1498748724
Category : Mathematics
Languages : en
Pages : 364
Book Description
This book provides theoretical concepts and applications of fractals and multifractals to a broad range of audiences from various scientific communities, such as petroleum, chemical, civil and environmental engineering, atmospheric research, and hydrology. In the first chapter, we introduce fractals and multifractals from physics and math viewpoints. We then discuss theory and practical applications in detail. In what follows, in chapter 2, fragmentation process is modeled using fractals. Fragmentation is the breaking of aggregates into smaller pieces or fragments, a typical phenomenon in nature. In chapter 3, the advantages and disadvantages of two- and three-phase fractal models are discussed in detail. These two kinds of approach have been widely applied in the literature to model different characteristics of natural phenomena. In chapter 4, two- and three-phase fractal techniques are used to develop capillary pressure curve models, which characterize pore-size distribution of porous media. Percolation theory provides a theoretical framework to model flow and transport in disordered networks and systems. Therefore, following chapter 4, in chapter 5 the fractal basis of percolation theory and its applications in surface and subsurface hydrology are discussed. In chapter 6, fracture networks are shown to be modeled using fractal approaches. Chapter 7 provides different applications of fractals and multifractals to petrophysics and relevant area in petroleum engineering. In chapter 8, we introduce the practical advantages of fractals and multifractals in geostatistics at large scales, which have broad applications in stochastic hydrology and hydrogeology. Multifractals have been also widely applied to model atmospheric characteristics, such as precipitation, temperature, and cloud shape. In chapter 9, these kinds of properties are addressed using multifractals. At watershed scales, river networks have been shown to follow fractal behavior. Therefore, the applications of fractals are addressed in chapter 10. Time series analysis has been under investigations for several decades in physics, hydrology, atmospheric research, civil engineering, and water resources. In chapter 11, we therefore, provide fractal, multifractal, multifractal detrended fluctuation analyses, which can be used to study temporal characterization of a phenomenon, such as flow discharge at a specific location of a river. Chapter 12 addresses signals and again time series using a novel fractal Fourier analysis. In chapter 13, we discuss constructal theory, which has a perspective opposite to fractal theories, and is based on optimizationof diffusive exchange. In the case of river drainages, for example, the constructal approach begins at the divide and generates headwater streams first, rather than starting from the fundamental drainage pattern.
Proceedings
Author:
Publisher:
ISBN:
Category : Engineering
Languages : en
Pages : 790
Book Description
Publisher:
ISBN:
Category : Engineering
Languages : en
Pages : 790
Book Description
Geological Storage of CO2 in Deep Saline Formations
Author: Auli Niemi
Publisher: Springer
ISBN: 9402409963
Category : Science
Languages : en
Pages : 567
Book Description
This book offers readers a comprehensive overview, and an in-depth understanding, of suitable methods for quantifying and characterizing saline aquifers for the geological storage of CO2. It begins with a general overview of the methodology and the processes that take place when CO2 is injected and stored in deep saline-water-containing formations. It subsequently presents mathematical and numerical models used for predicting the consequences of CO2 injection. This book provides descriptions of relevant experimental methods, from laboratory experiments to field scale site characterization and techniques for monitoring spreading of the injected CO2 within the formation. Experiences from a number of important field injection projects are reviewed, as are those from CO2 natural analog sites. Lastly, the book presents relevant risk management methods. Geological storage of CO2 is widely considered to be a key technology capable of substantially reducing the amount of CO2 released into the atmosphere, thereby reducing the negative impacts of such releases on the global climate. Around the world, projects are already in full swing, while others are now being initiated and executed to demonstrate the technology. Deep saline formations are the geological formations considered to hold the highest storage potential, due to their abundance worldwide. To date, however, these formations have been relatively poorly characterized, due to their low economic value. Accordingly, the processes involved in injecting and storing CO2 in such formations still need to be better quantified and methods for characterizing, modeling and monitoring this type of CO2 storage in such formations must be rapidly developed and refined.
Publisher: Springer
ISBN: 9402409963
Category : Science
Languages : en
Pages : 567
Book Description
This book offers readers a comprehensive overview, and an in-depth understanding, of suitable methods for quantifying and characterizing saline aquifers for the geological storage of CO2. It begins with a general overview of the methodology and the processes that take place when CO2 is injected and stored in deep saline-water-containing formations. It subsequently presents mathematical and numerical models used for predicting the consequences of CO2 injection. This book provides descriptions of relevant experimental methods, from laboratory experiments to field scale site characterization and techniques for monitoring spreading of the injected CO2 within the formation. Experiences from a number of important field injection projects are reviewed, as are those from CO2 natural analog sites. Lastly, the book presents relevant risk management methods. Geological storage of CO2 is widely considered to be a key technology capable of substantially reducing the amount of CO2 released into the atmosphere, thereby reducing the negative impacts of such releases on the global climate. Around the world, projects are already in full swing, while others are now being initiated and executed to demonstrate the technology. Deep saline formations are the geological formations considered to hold the highest storage potential, due to their abundance worldwide. To date, however, these formations have been relatively poorly characterized, due to their low economic value. Accordingly, the processes involved in injecting and storing CO2 in such formations still need to be better quantified and methods for characterizing, modeling and monitoring this type of CO2 storage in such formations must be rapidly developed and refined.