Author: Robert Oeckl
Publisher: Imperial College Press
ISBN: 1860947379
Category : Science
Languages : en
Pages : 218
Book Description
This book provides an introduction to topological quantum field theory as well as discrete gauge theory with quantum groups. In contrast to much of the existing literature, the present approach is at the same time intuitive and mathematically rigorous, making extensive use of suitable diagrammatic methods. It provides a highly unified description of lattice gauge theory, topological quantum field theory and models of quantum (super)gravity. The reader is thus in a unique position to understand the relations between these subjects as well as the underlying groundwork.
Discrete Gauge Theory
Author: Robert Oeckl
Publisher: Imperial College Press
ISBN: 1860947379
Category : Science
Languages : en
Pages : 218
Book Description
This book provides an introduction to topological quantum field theory as well as discrete gauge theory with quantum groups. In contrast to much of the existing literature, the present approach is at the same time intuitive and mathematically rigorous, making extensive use of suitable diagrammatic methods. It provides a highly unified description of lattice gauge theory, topological quantum field theory and models of quantum (super)gravity. The reader is thus in a unique position to understand the relations between these subjects as well as the underlying groundwork.
Publisher: Imperial College Press
ISBN: 1860947379
Category : Science
Languages : en
Pages : 218
Book Description
This book provides an introduction to topological quantum field theory as well as discrete gauge theory with quantum groups. In contrast to much of the existing literature, the present approach is at the same time intuitive and mathematically rigorous, making extensive use of suitable diagrammatic methods. It provides a highly unified description of lattice gauge theory, topological quantum field theory and models of quantum (super)gravity. The reader is thus in a unique position to understand the relations between these subjects as well as the underlying groundwork.
Gauge Theory and Defects in Solids
Author: D.G.B. Edelen
Publisher: Elsevier
ISBN: 0444600108
Category : Science
Languages : en
Pages : 438
Book Description
This new series Mechanics and Physics of Discrete Systems aims to provide a coherent picture of the modern development of discrete physical systems. Each volume will offer an orderly perspective of disciplines such as molecular dynamics, crystal mechanics and/or physics, dislocation, etc. Emphasized in particular are the fundamentals of mechanics and physics that play an essential role in engineering applications.Volume 1, Gauge Theory and Defects in Solids, presents a detailed development of a rational theory of the dynamics of defects and damage in solids. Solutions to field equations are used to determine stresses, dislocation densities and currents that arise from histories of loading of boundaries of bodies. Analysed in detail is a gauge theory with a gauge group that is not semi-simple, and whose action occurs at the classical macroscopic level. Yang-Mills theory is applied where the state variables are elastic displacements in solids, determination of mechanical and electromagnetic observables by choice of gauge conditions is demonstrated, and practices of classical dislocation theory are derived from first principles.
Publisher: Elsevier
ISBN: 0444600108
Category : Science
Languages : en
Pages : 438
Book Description
This new series Mechanics and Physics of Discrete Systems aims to provide a coherent picture of the modern development of discrete physical systems. Each volume will offer an orderly perspective of disciplines such as molecular dynamics, crystal mechanics and/or physics, dislocation, etc. Emphasized in particular are the fundamentals of mechanics and physics that play an essential role in engineering applications.Volume 1, Gauge Theory and Defects in Solids, presents a detailed development of a rational theory of the dynamics of defects and damage in solids. Solutions to field equations are used to determine stresses, dislocation densities and currents that arise from histories of loading of boundaries of bodies. Analysed in detail is a gauge theory with a gauge group that is not semi-simple, and whose action occurs at the classical macroscopic level. Yang-Mills theory is applied where the state variables are elastic displacements in solids, determination of mechanical and electromagnetic observables by choice of gauge conditions is demonstrated, and practices of classical dislocation theory are derived from first principles.
Particles and Fields
Author: Gordon W. Semenoff
Publisher: Springer Science & Business Media
ISBN: 9780387984025
Category : Science
Languages : en
Pages : 510
Book Description
The present volume has its source in the CAP-CRM summer school on "Particles and Fields" that was held in Banff in the summer of 1994. Over the years, the Division of Theoretical Physics of the Canadian Associa- tion of Physicists (CAP) has regularly sponsored such schools on various theoretical and experimental topics. In 1994, the Centre de Recherches Mathematiques (CRM) lent its support to the event. This institute, located in Montreal, is one of Canada's national research centers in the mathe- matical sciences. Its mandate includes the organization of scientific events across Canada and since 1994 the CRM has been holding a yearly summer school in Banff as part of its thematic program. The summer school, whose lectures are collected here, has thus become a tradition. The focus of the school was integrable theories, matrix models, statistical systems, field theory and its applications to condensed matter physics, as well as certain aspects of algebra, geometry, and topology. This covers some of the most significant advances in modern theoretical physics. The present volume updates and expands these lectures and reflects the high pedagogical level of the school. The first chapter by E. Corrigan describes some of the remarkable fea- tures of the integrable Toda field theories which are associated with affine Dynkin diagrams. The second chapter by J. Feldman, H. Knorrer, D. Leh- mann, and E.
Publisher: Springer Science & Business Media
ISBN: 9780387984025
Category : Science
Languages : en
Pages : 510
Book Description
The present volume has its source in the CAP-CRM summer school on "Particles and Fields" that was held in Banff in the summer of 1994. Over the years, the Division of Theoretical Physics of the Canadian Associa- tion of Physicists (CAP) has regularly sponsored such schools on various theoretical and experimental topics. In 1994, the Centre de Recherches Mathematiques (CRM) lent its support to the event. This institute, located in Montreal, is one of Canada's national research centers in the mathe- matical sciences. Its mandate includes the organization of scientific events across Canada and since 1994 the CRM has been holding a yearly summer school in Banff as part of its thematic program. The summer school, whose lectures are collected here, has thus become a tradition. The focus of the school was integrable theories, matrix models, statistical systems, field theory and its applications to condensed matter physics, as well as certain aspects of algebra, geometry, and topology. This covers some of the most significant advances in modern theoretical physics. The present volume updates and expands these lectures and reflects the high pedagogical level of the school. The first chapter by E. Corrigan describes some of the remarkable fea- tures of the integrable Toda field theories which are associated with affine Dynkin diagrams. The second chapter by J. Feldman, H. Knorrer, D. Leh- mann, and E.
Classical Theory of Gauge Fields
Author: Valery Rubakov
Publisher: Princeton University Press
ISBN: 1400825091
Category : Science
Languages : en
Pages : 456
Book Description
Based on a highly regarded lecture course at Moscow State University, this is a clear and systematic introduction to gauge field theory. It is unique in providing the means to master gauge field theory prior to the advanced study of quantum mechanics. Though gauge field theory is typically included in courses on quantum field theory, many of its ideas and results can be understood at the classical or semi-classical level. Accordingly, this book is organized so that its early chapters require no special knowledge of quantum mechanics. Aspects of gauge field theory relying on quantum mechanics are introduced only later and in a graduated fashion--making the text ideal for students studying gauge field theory and quantum mechanics simultaneously. The book begins with the basic concepts on which gauge field theory is built. It introduces gauge-invariant Lagrangians and describes the spectra of linear perturbations, including perturbations above nontrivial ground states. The second part focuses on the construction and interpretation of classical solutions that exist entirely due to the nonlinearity of field equations: solitons, bounces, instantons, and sphalerons. The third section considers some of the interesting effects that appear due to interactions of fermions with topological scalar and gauge fields. Mathematical digressions and numerous problems are included throughout. An appendix sketches the role of instantons as saddle points of Euclidean functional integral and related topics. Perfectly suited as an advanced undergraduate or beginning graduate text, this book is an excellent starting point for anyone seeking to understand gauge fields.
Publisher: Princeton University Press
ISBN: 1400825091
Category : Science
Languages : en
Pages : 456
Book Description
Based on a highly regarded lecture course at Moscow State University, this is a clear and systematic introduction to gauge field theory. It is unique in providing the means to master gauge field theory prior to the advanced study of quantum mechanics. Though gauge field theory is typically included in courses on quantum field theory, many of its ideas and results can be understood at the classical or semi-classical level. Accordingly, this book is organized so that its early chapters require no special knowledge of quantum mechanics. Aspects of gauge field theory relying on quantum mechanics are introduced only later and in a graduated fashion--making the text ideal for students studying gauge field theory and quantum mechanics simultaneously. The book begins with the basic concepts on which gauge field theory is built. It introduces gauge-invariant Lagrangians and describes the spectra of linear perturbations, including perturbations above nontrivial ground states. The second part focuses on the construction and interpretation of classical solutions that exist entirely due to the nonlinearity of field equations: solitons, bounces, instantons, and sphalerons. The third section considers some of the interesting effects that appear due to interactions of fermions with topological scalar and gauge fields. Mathematical digressions and numerous problems are included throughout. An appendix sketches the role of instantons as saddle points of Euclidean functional integral and related topics. Perfectly suited as an advanced undergraduate or beginning graduate text, this book is an excellent starting point for anyone seeking to understand gauge fields.
The Dawning of Gauge Theory
Author: Lochlainn O'Raifeartaigh
Publisher: Princeton University Press
ISBN: 0691215111
Category : Science
Languages : en
Pages :
Book Description
During the course of this century, gauge invariance has slowly emerged from being an incidental symmetry of electromagnetism to being a fundamental geometrical principle underlying the four known fundamental physical interactions. The development has been in two stages. In the first stage (1916-1956) the geometrical significance of gauge-invariance gradually came to be appreciated and the original abelian gauge-invariance of electromagnetism was generalized to non-abelian gauge invariance. In the second stage (1960-1975) it was found that, contrary to first appearances, the non-abelian gauge-theories provided exactly the framework that was needed to describe the nuclear interactions (both weak and strong) and thus provided a universal framework for describing all known fundamental interactions. In this work, Lochlainn O'Raifeartaigh describes the former phase. O'Raifeartaigh first illustrates how gravitational theory and quantum mechanics played crucial roles in the reassessment of gauge theory as a geometric principle and as a framework for describing both electromagnetism and gravitation. He then describes how the abelian electromagnetic gauge-theory was generalized to its present non-abelian form. The development is illustrated by including a selection of relevant articles, many of them appearing here for the first time in English, notably by Weyl, Schrodinger, Klein, and London in the pre-war years, and by Pauli, Shaw, Yang-Mills, and Utiyama after the war. The articles illustrate that the reassessment of gauge-theory, due in a large measure to Weyl, constituted a major philosophical as well as technical advance.
Publisher: Princeton University Press
ISBN: 0691215111
Category : Science
Languages : en
Pages :
Book Description
During the course of this century, gauge invariance has slowly emerged from being an incidental symmetry of electromagnetism to being a fundamental geometrical principle underlying the four known fundamental physical interactions. The development has been in two stages. In the first stage (1916-1956) the geometrical significance of gauge-invariance gradually came to be appreciated and the original abelian gauge-invariance of electromagnetism was generalized to non-abelian gauge invariance. In the second stage (1960-1975) it was found that, contrary to first appearances, the non-abelian gauge-theories provided exactly the framework that was needed to describe the nuclear interactions (both weak and strong) and thus provided a universal framework for describing all known fundamental interactions. In this work, Lochlainn O'Raifeartaigh describes the former phase. O'Raifeartaigh first illustrates how gravitational theory and quantum mechanics played crucial roles in the reassessment of gauge theory as a geometric principle and as a framework for describing both electromagnetism and gravitation. He then describes how the abelian electromagnetic gauge-theory was generalized to its present non-abelian form. The development is illustrated by including a selection of relevant articles, many of them appearing here for the first time in English, notably by Weyl, Schrodinger, Klein, and London in the pre-war years, and by Pauli, Shaw, Yang-Mills, and Utiyama after the war. The articles illustrate that the reassessment of gauge-theory, due in a large measure to Weyl, constituted a major philosophical as well as technical advance.
Gauge/Gravity Duality
Author: Martin Ammon
Publisher: Cambridge University Press
ISBN: 1107010349
Category : Juvenile Nonfiction
Languages : en
Pages : 549
Book Description
The first textbook on this important topic, for graduate students and researchers in particle and condensed matter physics.
Publisher: Cambridge University Press
ISBN: 1107010349
Category : Juvenile Nonfiction
Languages : en
Pages : 549
Book Description
The first textbook on this important topic, for graduate students and researchers in particle and condensed matter physics.
The Phases of Quantum Chromodynamics
Author: John B. Kogut
Publisher: Cambridge University Press
ISBN: 1139441590
Category : Science
Languages : en
Pages : 376
Book Description
This book discusses the physical phases of quantum chromodynamics (QCD) in ordinary environments and also in extreme environments of high temperatures and high baryon number. It introduces lattice gauge theory, covering fundamentals and important developments, and emphasises the application of QCD to the study of matter in extreme environments.
Publisher: Cambridge University Press
ISBN: 1139441590
Category : Science
Languages : en
Pages : 376
Book Description
This book discusses the physical phases of quantum chromodynamics (QCD) in ordinary environments and also in extreme environments of high temperatures and high baryon number. It introduces lattice gauge theory, covering fundamentals and important developments, and emphasises the application of QCD to the study of matter in extreme environments.
Quantum Field Theory and Condensed Matter
Author: Ramamurti Shankar
Publisher: Cambridge University Press
ISBN: 1108363989
Category : Science
Languages : en
Pages : 557
Book Description
Providing a broad review of many techniques and their application to condensed matter systems, this book begins with a review of thermodynamics and statistical mechanics, before moving onto real and imaginary time path integrals and the link between Euclidean quantum mechanics and statistical mechanics. A detailed study of the Ising, gauge-Ising and XY models is included. The renormalization group is developed and applied to critical phenomena, Fermi liquid theory and the renormalization of field theories. Next, the book explores bosonization and its applications to one-dimensional fermionic systems and the correlation functions of homogeneous and random-bond Ising models. It concludes with Bohm–Pines and Chern–Simons theories applied to the quantum Hall effect. Introducing the reader to a variety of techniques, it opens up vast areas of condensed matter theory for both graduate students and researchers in theoretical, statistical and condensed matter physics.
Publisher: Cambridge University Press
ISBN: 1108363989
Category : Science
Languages : en
Pages : 557
Book Description
Providing a broad review of many techniques and their application to condensed matter systems, this book begins with a review of thermodynamics and statistical mechanics, before moving onto real and imaginary time path integrals and the link between Euclidean quantum mechanics and statistical mechanics. A detailed study of the Ising, gauge-Ising and XY models is included. The renormalization group is developed and applied to critical phenomena, Fermi liquid theory and the renormalization of field theories. Next, the book explores bosonization and its applications to one-dimensional fermionic systems and the correlation functions of homogeneous and random-bond Ising models. It concludes with Bohm–Pines and Chern–Simons theories applied to the quantum Hall effect. Introducing the reader to a variety of techniques, it opens up vast areas of condensed matter theory for both graduate students and researchers in theoretical, statistical and condensed matter physics.
Hamiltonian Mechanics of Gauge Systems
Author: Lev V. Prokhorov
Publisher: Cambridge University Press
ISBN: 1139500902
Category : Science
Languages : en
Pages : 485
Book Description
The principles of gauge symmetry and quantization are fundamental to modern understanding of the laws of electromagnetism, weak and strong subatomic forces and the theory of general relativity. Ideal for graduate students and researchers in theoretical and mathematical physics, this unique book provides a systematic introduction to Hamiltonian mechanics of systems with gauge symmetry. The book reveals how gauge symmetry may lead to a non-trivial geometry of the physical phase space and studies its effect on quantum dynamics by path integral methods. It also covers aspects of Hamiltonian path integral formalism in detail, along with a number of related topics such as the theory of canonical transformations on phase space supermanifolds, non-commutativity of canonical quantization and elimination of non-physical variables. The discussion is accompanied by numerous detailed examples of dynamical models with gauge symmetries, clearly illustrating the key concepts.
Publisher: Cambridge University Press
ISBN: 1139500902
Category : Science
Languages : en
Pages : 485
Book Description
The principles of gauge symmetry and quantization are fundamental to modern understanding of the laws of electromagnetism, weak and strong subatomic forces and the theory of general relativity. Ideal for graduate students and researchers in theoretical and mathematical physics, this unique book provides a systematic introduction to Hamiltonian mechanics of systems with gauge symmetry. The book reveals how gauge symmetry may lead to a non-trivial geometry of the physical phase space and studies its effect on quantum dynamics by path integral methods. It also covers aspects of Hamiltonian path integral formalism in detail, along with a number of related topics such as the theory of canonical transformations on phase space supermanifolds, non-commutativity of canonical quantization and elimination of non-physical variables. The discussion is accompanied by numerous detailed examples of dynamical models with gauge symmetries, clearly illustrating the key concepts.
Non-Perturbative Field Theory
Author: Yitzhak Frishman
Publisher: Cambridge University Press
ISBN: 1139486489
Category : Science
Languages : en
Pages : 455
Book Description
Providing a new perspective on quantum field theory, this book is useful for graduate students and researchers within and outside the field. It describes non-perturbative methods, and explores two-dimensional and four-dimensional gauge dynamics using those methods. Applications are thoroughly described.
Publisher: Cambridge University Press
ISBN: 1139486489
Category : Science
Languages : en
Pages : 455
Book Description
Providing a new perspective on quantum field theory, this book is useful for graduate students and researchers within and outside the field. It describes non-perturbative methods, and explores two-dimensional and four-dimensional gauge dynamics using those methods. Applications are thoroughly described.