Dirichlet and Related Distributions

Dirichlet and Related Distributions PDF Author: Kai Wang Ng
Publisher: John Wiley & Sons
ISBN: 1119998417
Category : Mathematics
Languages : en
Pages : 259

Get Book Here

Book Description
The Dirichlet distribution appears in many areas of application, which include modelling of compositional data, Bayesian analysis, statistical genetics, and nonparametric inference. This book provides a comprehensive review of the Dirichlet distribution and two extended versions, the Grouped Dirichlet Distribution (GDD) and the Nested Dirichlet Distribution (NDD), arising from likelihood and Bayesian analysis of incomplete categorical data and survey data with non-response. The theoretical properties and applications are also reviewed in detail for other related distributions, such as the inverted Dirichlet distribution, Dirichlet-multinomial distribution, the truncated Dirichlet distribution, the generalized Dirichlet distribution, Hyper-Dirichlet distribution, scaled Dirichlet distribution, mixed Dirichlet distribution, Liouville distribution, and the generalized Liouville distribution. Key Features: Presents many of the results and applications that are scattered throughout the literature in one single volume. Looks at the most recent results such as survival function and characteristic function for the uniform distributions over the hyper-plane and simplex; distribution for linear function of Dirichlet components; estimation via the expectation-maximization gradient algorithm and application; etc. Likelihood and Bayesian analyses of incomplete categorical data by using GDD, NDD, and the generalized Dirichlet distribution are illustrated in detail through the EM algorithm and data augmentation structure. Presents a systematic exposition of the Dirichlet-multinomial distribution for multinomial data with extra variation which cannot be handled by the multinomial distribution. S-plus/R codes are featured along with practical examples illustrating the methods. Practitioners and researchers working in areas such as medical science, biological science and social science will benefit from this book.

Dirichlet and Related Distributions

Dirichlet and Related Distributions PDF Author: Kai Wang Ng
Publisher: John Wiley & Sons
ISBN: 1119998417
Category : Mathematics
Languages : en
Pages : 259

Get Book Here

Book Description
The Dirichlet distribution appears in many areas of application, which include modelling of compositional data, Bayesian analysis, statistical genetics, and nonparametric inference. This book provides a comprehensive review of the Dirichlet distribution and two extended versions, the Grouped Dirichlet Distribution (GDD) and the Nested Dirichlet Distribution (NDD), arising from likelihood and Bayesian analysis of incomplete categorical data and survey data with non-response. The theoretical properties and applications are also reviewed in detail for other related distributions, such as the inverted Dirichlet distribution, Dirichlet-multinomial distribution, the truncated Dirichlet distribution, the generalized Dirichlet distribution, Hyper-Dirichlet distribution, scaled Dirichlet distribution, mixed Dirichlet distribution, Liouville distribution, and the generalized Liouville distribution. Key Features: Presents many of the results and applications that are scattered throughout the literature in one single volume. Looks at the most recent results such as survival function and characteristic function for the uniform distributions over the hyper-plane and simplex; distribution for linear function of Dirichlet components; estimation via the expectation-maximization gradient algorithm and application; etc. Likelihood and Bayesian analyses of incomplete categorical data by using GDD, NDD, and the generalized Dirichlet distribution are illustrated in detail through the EM algorithm and data augmentation structure. Presents a systematic exposition of the Dirichlet-multinomial distribution for multinomial data with extra variation which cannot be handled by the multinomial distribution. S-plus/R codes are featured along with practical examples illustrating the methods. Practitioners and researchers working in areas such as medical science, biological science and social science will benefit from this book.

The Poisson-Dirichlet Distribution and Related Topics

The Poisson-Dirichlet Distribution and Related Topics PDF Author: Shui Feng
Publisher: Springer
ISBN: 9783642263798
Category : Mathematics
Languages : en
Pages : 0

Get Book Here

Book Description
Presenting a comprehensive study of the Poisson-Dirichlet distribution, this volume emphasizes recent progress in evolutionary dynamics and asymptotic behaviors. The self-contained text presents methods and techniques that appeal to researchers in a wide variety of subjects.

Bayesian Nonparametrics

Bayesian Nonparametrics PDF Author: J.K. Ghosh
Publisher: Springer Science & Business Media
ISBN: 0387226540
Category : Mathematics
Languages : en
Pages : 311

Get Book Here

Book Description
This book is the first systematic treatment of Bayesian nonparametric methods and the theory behind them. It will also appeal to statisticians in general. The book is primarily aimed at graduate students and can be used as the text for a graduate course in Bayesian non-parametrics.

Bayesian Nonparametrics

Bayesian Nonparametrics PDF Author: Nils Lid Hjort
Publisher: Cambridge University Press
ISBN: 1139484605
Category : Mathematics
Languages : en
Pages : 309

Get Book Here

Book Description
Bayesian nonparametrics works - theoretically, computationally. The theory provides highly flexible models whose complexity grows appropriately with the amount of data. Computational issues, though challenging, are no longer intractable. All that is needed is an entry point: this intelligent book is the perfect guide to what can seem a forbidding landscape. Tutorial chapters by Ghosal, Lijoi and Prünster, Teh and Jordan, and Dunson advance from theory, to basic models and hierarchical modeling, to applications and implementation, particularly in computer science and biostatistics. These are complemented by companion chapters by the editors and Griffin and Quintana, providing additional models, examining computational issues, identifying future growth areas, and giving links to related topics. This coherent text gives ready access both to underlying principles and to state-of-the-art practice. Specific examples are drawn from information retrieval, NLP, machine vision, computational biology, biostatistics, and bioinformatics.

Special Functions for Applied Scientists

Special Functions for Applied Scientists PDF Author: A.M. Mathai
Publisher: Springer Science & Business Media
ISBN: 0387758941
Category : Science
Languages : en
Pages : 480

Get Book Here

Book Description
This book, written by a highly distinguished author, provides the required mathematical tools for researchers active in the physical sciences. The book presents a full suit of elementary functions for scholars at PhD level. The opening chapter introduces elementary classical special functions. The final chapter is devoted to the discussion of functions of matrix argument in the real case. The text and exercises have been class-tested over five different years.

A Primer on Statistical Distributions

A Primer on Statistical Distributions PDF Author: Narayanaswamy Balakrishnan
Publisher: John Wiley & Sons
ISBN: 0471722219
Category : Mathematics
Languages : en
Pages : 322

Get Book Here

Book Description
Designed as an introduction to statistical distribution theory. * Includes a first chapter on basic notations and definitions that are essential to working with distributions. * Remaining chapters are divided into three parts: Discrete Distributions, Continuous Distributions, and Multivariate Distributions. * Exercises are incorporated throughout the text in order to enhance understanding of materials just taught.

Matrix Variate Distributions

Matrix Variate Distributions PDF Author: A K Gupta
Publisher: CRC Press
ISBN: 1351433008
Category : Mathematics
Languages : en
Pages : 382

Get Book Here

Book Description
Useful in physics, economics, psychology, and other fields, random matrices play an important role in the study of multivariate statistical methods. Until now, however, most of the material on random matrices could only be found scattered in various statistical journals. Matrix Variate Distributions gathers and systematically presents most of the recent developments in continuous matrix variate distribution theory and includes new results. After a review of the essential background material, the authors investigate the range of matrix variate distributions, including: matrix variate normal distribution Wishart distribution Matrix variate t-distribution Matrix variate beta distribution F-distribution Matrix variate Dirichlet distribution Matrix quadratic forms With its inclusion of new results, Matrix Variate Distributions promises to stimulate further research and help advance the field of multivariate statistical analysis.

Theory and Use of the EM Algorithm

Theory and Use of the EM Algorithm PDF Author: Maya R. Gupta
Publisher: Now Publishers Inc
ISBN: 1601984308
Category : Computers
Languages : en
Pages : 87

Get Book Here

Book Description
Introduces the expectation-maximization (EM) algorithm and provides an intuitive and mathematically rigorous understanding of this method. Theory and Use of the EM Algorithm is designed to be useful to both the EM novice and the experienced EM user looking to better understand the method and its use.

Dirichlet Forms and Symmetric Markov Processes

Dirichlet Forms and Symmetric Markov Processes PDF Author: Masatoshi Fukushima
Publisher: Walter de Gruyter
ISBN: 3110218089
Category : Mathematics
Languages : en
Pages : 501

Get Book Here

Book Description
Since the publication of the first edition in 1994, this book has attracted constant interests from readers and is by now regarded as a standard reference for the theory of Dirichlet forms. For the present second edition, the authors not only revise

Linear Models and the Relevant Distributions and Matrix Algebra

Linear Models and the Relevant Distributions and Matrix Algebra PDF Author: David A. Harville
Publisher: CRC Press
ISBN: 1351264664
Category : Mathematics
Languages : en
Pages : 789

Get Book Here

Book Description
Linear Models and the Relevant Distributions and Matrix Algebra provides in-depth and detailed coverage of the use of linear statistical models as a basis for parametric and predictive inference. It can be a valuable reference, a primary or secondary text in a graduate-level course on linear models, or a resource used (in a course on mathematical statistics) to illustrate various theoretical concepts in the context of a relatively complex setting of great practical importance. Features: Provides coverage of matrix algebra that is extensive and relatively self-contained and does so in a meaningful context Provides thorough coverage of the relevant statistical distributions, including spherically and elliptically symmetric distributions Includes extensive coverage of multiple-comparison procedures (and of simultaneous confidence intervals), including procedures for controlling the k-FWER and the FDR Provides thorough coverage (complete with detailed and highly accessible proofs) of results on the properties of various linear-model procedures, including those of least squares estimators and those of the F test. Features the use of real data sets for illustrative purposes Includes many exercises David Harville served for 10 years as a mathematical statistician in the Applied Mathematics Research Laboratory of the Aerospace Research Laboratories at Wright-Patterson AFB, Ohio, 20 years as a full professor in Iowa State University’s Department of Statistics where he now has emeritus status, and seven years as a research staff member of the Mathematical Sciences Department of IBM’s T.J. Watson Research Center. He has considerable relevant experience, having taught M.S. and Ph.D. level courses in linear models, been the thesis advisor of 10 Ph.D. graduates, and authored or co-authored two books and more than 80 research articles. His work has been recognized through his election as a Fellow of the American Statistical Association and of the Institute of Mathematical Statistics and as a member of the International Statistical Institute.