Author: John Lott
Publisher: American Mathematical Soc.
ISBN: 0821811894
Category : Mathematics
Languages : en
Pages : 71
Book Description
This book is intended for graduate students and research mathematicians working in global analysis and analysis on manifolds
Diffeomorphisms and Noncommutative Analytic Torsion
Author: John Lott
Publisher: American Mathematical Soc.
ISBN: 0821811894
Category : Mathematics
Languages : en
Pages : 71
Book Description
This book is intended for graduate students and research mathematicians working in global analysis and analysis on manifolds
Publisher: American Mathematical Soc.
ISBN: 0821811894
Category : Mathematics
Languages : en
Pages : 71
Book Description
This book is intended for graduate students and research mathematicians working in global analysis and analysis on manifolds
Diffeomorphisms and Noncommutative Analytic Torsion
Author: John Lott
Publisher: American Mathematical Society(RI)
ISBN: 9781470402648
Category : Diffeomorphisms
Languages : en
Pages : 71
Book Description
This book is intended for graduate students and research mathematicians working in global analysis and analysis on manifolds
Publisher: American Mathematical Society(RI)
ISBN: 9781470402648
Category : Diffeomorphisms
Languages : en
Pages : 71
Book Description
This book is intended for graduate students and research mathematicians working in global analysis and analysis on manifolds
Dynamical Zeta Functions, Nielsen Theory and Reidemeister Torsion
Author: Alexander Fel'shtyn
Publisher: American Mathematical Soc.
ISBN: 0821820907
Category : Mathematics
Languages : en
Pages : 165
Book Description
In the paper we study new dynamical zeta functions connected with Nielsen fixed point theory. The study of dynamical zeta functions is part of the theory of dynamical systems, but it is also intimately related to algebraic geometry, number theory, topology and statistical mechanics. The paper consists of four parts. Part I presents a brief account of the Nielsen fixed point theory. Part II deals with dynamical zeta functions connected with Nielsen fixed point theory. Part III is concerned with analog of Dold congruences for the Reidemeister and Nielsen numbers. In Part IV we explain how dynamical zeta functions give rise to the Reidemeister torsion, a very important topological invariant which has useful applications in knots theory,quantum field theory and dynamical systems.
Publisher: American Mathematical Soc.
ISBN: 0821820907
Category : Mathematics
Languages : en
Pages : 165
Book Description
In the paper we study new dynamical zeta functions connected with Nielsen fixed point theory. The study of dynamical zeta functions is part of the theory of dynamical systems, but it is also intimately related to algebraic geometry, number theory, topology and statistical mechanics. The paper consists of four parts. Part I presents a brief account of the Nielsen fixed point theory. Part II deals with dynamical zeta functions connected with Nielsen fixed point theory. Part III is concerned with analog of Dold congruences for the Reidemeister and Nielsen numbers. In Part IV we explain how dynamical zeta functions give rise to the Reidemeister torsion, a very important topological invariant which has useful applications in knots theory,quantum field theory and dynamical systems.
Non-Uniform Lattices on Uniform Trees
Author: Lisa Carbone
Publisher: American Mathematical Soc.
ISBN: 0821827219
Category : Mathematics
Languages : en
Pages : 146
Book Description
This title provides a comprehensive examination of non-uniform lattices on uniform trees. Topics include graphs of groups, tree actions and edge-indexed graphs; $Aut(x)$ and its discrete subgroups; existence of tree lattices; non-uniform coverings of indexed graphs with an arithmetic bridge; non-uniform coverings of indexed graphs with a separating edge; non-uniform coverings of indexed graphs with a ramified loop; eliminating multiple edges; existence of arithmetic bridges. This book is intended for graduate students and research mathematicians interested in group theory and generalizations.
Publisher: American Mathematical Soc.
ISBN: 0821827219
Category : Mathematics
Languages : en
Pages : 146
Book Description
This title provides a comprehensive examination of non-uniform lattices on uniform trees. Topics include graphs of groups, tree actions and edge-indexed graphs; $Aut(x)$ and its discrete subgroups; existence of tree lattices; non-uniform coverings of indexed graphs with an arithmetic bridge; non-uniform coverings of indexed graphs with a separating edge; non-uniform coverings of indexed graphs with a ramified loop; eliminating multiple edges; existence of arithmetic bridges. This book is intended for graduate students and research mathematicians interested in group theory and generalizations.
Equivariant Analytic Localization of Group Representations
Author: Laura Ann Smithies
Publisher: American Mathematical Soc.
ISBN: 0821827251
Category : Mathematics
Languages : en
Pages : 106
Book Description
This book is intended for graduate students and research mathematicians interested in topological groups, Lie groups, category theory, and homological algebra.
Publisher: American Mathematical Soc.
ISBN: 0821827251
Category : Mathematics
Languages : en
Pages : 106
Book Description
This book is intended for graduate students and research mathematicians interested in topological groups, Lie groups, category theory, and homological algebra.
The Theory of Generalized Dirichlet Forms and Its Applications in Analysis and Stochastics
Author: Wilhelm Stannat
Publisher: American Mathematical Soc.
ISBN: 0821813846
Category : Mathematics
Languages : en
Pages : 114
Book Description
This text explores the theory of generalized Dirichlet Forms along with its applications for analysis and stochastics. Examples are provided.
Publisher: American Mathematical Soc.
ISBN: 0821813846
Category : Mathematics
Languages : en
Pages : 114
Book Description
This text explores the theory of generalized Dirichlet Forms along with its applications for analysis and stochastics. Examples are provided.
A New Construction of Homogeneous Quaternionic Manifolds and Related Geometric Structures
Author: Vicente Cortés
Publisher: American Mathematical Soc.
ISBN: 0821821113
Category : Mathematics
Languages : en
Pages : 79
Book Description
Let $V = {\mathbb R}^{p,q}$ be the pseudo-Euclidean vector space of signature $(p,q)$, $p\ge 3$ and $W$ a module over the even Clifford algebra $C\! \ell^0 (V)$. A homogeneous quaternionic manifold $(M,Q)$ is constructed for any $\mathfrak{spin}(V)$-equivariant linear map $\Pi : \wedge^2 W \rightarrow V$. If the skew symmetric vector valued bilinear form $\Pi$ is nondegenerate then $(M,Q)$ is endowed with a canonical pseudo-Riemannian metric $g$ such that $(M,Q,g)$ is a homogeneous quaternionic pseudo-Kahler manifold. If the metric $g$ is positive definite, i.e. a Riemannian metric, then the quaternionic Kahler manifold $(M,Q,g)$ is shown to admit a simply transitive solvable group of automorphisms. In this special case ($p=3$) we recover all the known homogeneous quaternionic Kahler manifolds of negative scalar curvature (Alekseevsky spaces) in a unified and direct way. If $p>3$ then $M$ does not admit any transitive action of a solvable Lie group and we obtain new families of quaternionic pseudo-Kahler manifolds. Then it is shown that for $q = 0$ the noncompact quaternionic manifold $(M,Q)$ can be endowed with a Riemannian metric $h$ such that $(M,Q,h)$ is a homogeneous quaternionic Hermitian manifold, which does not admit any transitive solvable group of isometries if $p>3$. The twistor bundle $Z \rightarrow M$ and the canonical ${\mathrm SO}(3)$-principal bundle $S \rightarrow M$ associated to the quaternionic manifold $(M,Q)$ are shown to be homogeneous under the automorphism group of the base. More specifically, the twistor space is a homogeneous complex manifold carrying an invariant holomorphic distribution $\mathcal D$ of complex codimension one, which is a complex contact structure if and only if $\Pi$ is nondegenerate. Moreover, an equivariant open holomorphic immersion $Z \rightarrow \bar{Z}$ into a homogeneous complex manifold $\bar{Z}$ of complex algebraic group is constructed. Finally, the construction is shown to have a natural mirror in the category of supermanifolds. In fact, for any $\mathfrak{spin}(V)$-equivariant linear map $\Pi : \vee^2 W \rightarrow V$ a homogeneous quaternionic supermanifold $(M,Q)$ is constructed and, moreover, a homogeneous quaternionic pseudo-Kahler supermanifold $(M,Q,g)$ if the symmetric vector valued bilinear form $\Pi$ is nondegenerate.
Publisher: American Mathematical Soc.
ISBN: 0821821113
Category : Mathematics
Languages : en
Pages : 79
Book Description
Let $V = {\mathbb R}^{p,q}$ be the pseudo-Euclidean vector space of signature $(p,q)$, $p\ge 3$ and $W$ a module over the even Clifford algebra $C\! \ell^0 (V)$. A homogeneous quaternionic manifold $(M,Q)$ is constructed for any $\mathfrak{spin}(V)$-equivariant linear map $\Pi : \wedge^2 W \rightarrow V$. If the skew symmetric vector valued bilinear form $\Pi$ is nondegenerate then $(M,Q)$ is endowed with a canonical pseudo-Riemannian metric $g$ such that $(M,Q,g)$ is a homogeneous quaternionic pseudo-Kahler manifold. If the metric $g$ is positive definite, i.e. a Riemannian metric, then the quaternionic Kahler manifold $(M,Q,g)$ is shown to admit a simply transitive solvable group of automorphisms. In this special case ($p=3$) we recover all the known homogeneous quaternionic Kahler manifolds of negative scalar curvature (Alekseevsky spaces) in a unified and direct way. If $p>3$ then $M$ does not admit any transitive action of a solvable Lie group and we obtain new families of quaternionic pseudo-Kahler manifolds. Then it is shown that for $q = 0$ the noncompact quaternionic manifold $(M,Q)$ can be endowed with a Riemannian metric $h$ such that $(M,Q,h)$ is a homogeneous quaternionic Hermitian manifold, which does not admit any transitive solvable group of isometries if $p>3$. The twistor bundle $Z \rightarrow M$ and the canonical ${\mathrm SO}(3)$-principal bundle $S \rightarrow M$ associated to the quaternionic manifold $(M,Q)$ are shown to be homogeneous under the automorphism group of the base. More specifically, the twistor space is a homogeneous complex manifold carrying an invariant holomorphic distribution $\mathcal D$ of complex codimension one, which is a complex contact structure if and only if $\Pi$ is nondegenerate. Moreover, an equivariant open holomorphic immersion $Z \rightarrow \bar{Z}$ into a homogeneous complex manifold $\bar{Z}$ of complex algebraic group is constructed. Finally, the construction is shown to have a natural mirror in the category of supermanifolds. In fact, for any $\mathfrak{spin}(V)$-equivariant linear map $\Pi : \vee^2 W \rightarrow V$ a homogeneous quaternionic supermanifold $(M,Q)$ is constructed and, moreover, a homogeneous quaternionic pseudo-Kahler supermanifold $(M,Q,g)$ if the symmetric vector valued bilinear form $\Pi$ is nondegenerate.
On the Connection between Weighted Norm Inequalities, Commutators and Real Interpolation
Author: Jesús Bastero
Publisher: American Mathematical Soc.
ISBN: 0821827340
Category : Mathematics
Languages : en
Pages : 94
Book Description
Introduction Calderon weights Applications to real interpolation: reiteration and extrapolation Other classes of weights Extrapolation of weighted norm inequalities via extrapolation theory Applications to function spaces Commutators defined by the K-method Generalized commutators The quasi Banach case Applications to harmonic analysis BMO type spaces associated to Calderon weights Atomic decompositions and duality References.
Publisher: American Mathematical Soc.
ISBN: 0821827340
Category : Mathematics
Languages : en
Pages : 94
Book Description
Introduction Calderon weights Applications to real interpolation: reiteration and extrapolation Other classes of weights Extrapolation of weighted norm inequalities via extrapolation theory Applications to function spaces Commutators defined by the K-method Generalized commutators The quasi Banach case Applications to harmonic analysis BMO type spaces associated to Calderon weights Atomic decompositions and duality References.
The Decomposition and Classification of Radiant Affine 3-Manifolds
Author: Suhyoung Choi
Publisher: American Mathematical Soc.
ISBN: 0821827049
Category : Mathematics
Languages : en
Pages : 137
Book Description
An affine manifold is a manifold with torsion-free flat affine connection - a geometric topologist would define it as a manifold with an atlas of charts to the affine space with affine transition functions. This title is an in-depth examination of the decomposition and classification of radiant affine 3-manifolds - affine manifolds of the type that have a holonomy group consisting of affine transformations fixing a common fixed point.
Publisher: American Mathematical Soc.
ISBN: 0821827049
Category : Mathematics
Languages : en
Pages : 137
Book Description
An affine manifold is a manifold with torsion-free flat affine connection - a geometric topologist would define it as a manifold with an atlas of charts to the affine space with affine transition functions. This title is an in-depth examination of the decomposition and classification of radiant affine 3-manifolds - affine manifolds of the type that have a holonomy group consisting of affine transformations fixing a common fixed point.
On the Foundations of Nonlinear Generalized Functions I and II
Author: Michael Grosser
Publisher: American Mathematical Soc.
ISBN: 0821827294
Category : Mathematics
Languages : en
Pages : 113
Book Description
In part 1 of this title the authors construct a diffeomorphism invariant (Colombeau-type) differential algebra canonically containing the space of distributions in the sense of L. Schwartz. Employing differential calculus in infinite dimensional (convenient) vector spaces, previous attempts in this direction are unified and completed. Several classification results are achieved and applications to nonlinear differential equations involving singularities are given.
Publisher: American Mathematical Soc.
ISBN: 0821827294
Category : Mathematics
Languages : en
Pages : 113
Book Description
In part 1 of this title the authors construct a diffeomorphism invariant (Colombeau-type) differential algebra canonically containing the space of distributions in the sense of L. Schwartz. Employing differential calculus in infinite dimensional (convenient) vector spaces, previous attempts in this direction are unified and completed. Several classification results are achieved and applications to nonlinear differential equations involving singularities are given.