Author: Trond Ytterdal
Publisher: John Wiley & Sons
ISBN: 0470864346
Category : Technology & Engineering
Languages : en
Pages : 306
Book Description
Bridges the gap between device modelling and analog circuit design. Includes dedicated software enabling actual circuit design. Covers the three significant models: BSIM3, Model 9 &, and EKV. Presents practical guidance on device development and circuit implementation. The authors offer a combination of extensive academic and industrial experience.
Device Modeling for Analog and RF CMOS Circuit Design
Author: Trond Ytterdal
Publisher: John Wiley & Sons
ISBN: 0470864346
Category : Technology & Engineering
Languages : en
Pages : 306
Book Description
Bridges the gap between device modelling and analog circuit design. Includes dedicated software enabling actual circuit design. Covers the three significant models: BSIM3, Model 9 &, and EKV. Presents practical guidance on device development and circuit implementation. The authors offer a combination of extensive academic and industrial experience.
Publisher: John Wiley & Sons
ISBN: 0470864346
Category : Technology & Engineering
Languages : en
Pages : 306
Book Description
Bridges the gap between device modelling and analog circuit design. Includes dedicated software enabling actual circuit design. Covers the three significant models: BSIM3, Model 9 &, and EKV. Presents practical guidance on device development and circuit implementation. The authors offer a combination of extensive academic and industrial experience.
CMOS RF Modeling, Characterization and Applications
Author: M. Jamal Deen
Publisher: World Scientific
ISBN: 9789810249052
Category : Science
Languages : en
Pages : 426
Book Description
CMOS technology has now reached a state of evolution, in terms of both frequency and noise, where it is becoming a serious contender for radio frequency (RF) applications in the GHz range. Cutoff frequencies of about 50 GHz have been reported for 0.18 æm CMOS technology, and are expected to reach about 100 GHz when the feature size shrinks to 100 nm within a few years. This translates into CMOS circuit operating frequencies well into the GHz range, which covers the frequency range of many of today's popular wireless products, such as cell phones, GPS (Global Positioning System) and Bluetooth. Of course, the great interest in RF CMOS comes from the obvious advantages of CMOS technology in terms of production cost, high-level integration, and the ability to combine digital, analog and RF circuits on the same chip. This book discusses many of the challenges facing the CMOS RF circuit designer in terms of device modeling and characterization, which are crucial issues in circuit simulation and design.
Publisher: World Scientific
ISBN: 9789810249052
Category : Science
Languages : en
Pages : 426
Book Description
CMOS technology has now reached a state of evolution, in terms of both frequency and noise, where it is becoming a serious contender for radio frequency (RF) applications in the GHz range. Cutoff frequencies of about 50 GHz have been reported for 0.18 æm CMOS technology, and are expected to reach about 100 GHz when the feature size shrinks to 100 nm within a few years. This translates into CMOS circuit operating frequencies well into the GHz range, which covers the frequency range of many of today's popular wireless products, such as cell phones, GPS (Global Positioning System) and Bluetooth. Of course, the great interest in RF CMOS comes from the obvious advantages of CMOS technology in terms of production cost, high-level integration, and the ability to combine digital, analog and RF circuits on the same chip. This book discusses many of the challenges facing the CMOS RF circuit designer in terms of device modeling and characterization, which are crucial issues in circuit simulation and design.
Charge-Based MOS Transistor Modeling
Author: Christian C. Enz
Publisher: John Wiley & Sons
ISBN: 0470855452
Category : Technology & Engineering
Languages : en
Pages : 328
Book Description
Modern, large-scale analog integrated circuits (ICs) are essentially composed of metal-oxide semiconductor (MOS) transistors and their interconnections. As technology scales down to deep sub-micron dimensions and supply voltage decreases to reduce power consumption, these complex analog circuits are even more dependent on the exact behavior of each transistor. High-performance analog circuit design requires a very detailed model of the transistor, describing accurately its static and dynamic behaviors, its noise and matching limitations and its temperature variations. The charge-based EKV (Enz-Krummenacher-Vittoz) MOS transistor model for IC design has been developed to provide a clear understanding of the device properties, without the use of complicated equations. All the static, dynamic, noise, non-quasi-static models are completely described in terms of the inversion charge at the source and at the drain taking advantage of the symmetry of the device. Thanks to its hierarchical structure, the model offers several coherent description levels, from basic hand calculation equations to complete computer simulation model. It is also compact, with a minimum number of process-dependant device parameters. Written by its developers, this book provides a comprehensive treatment of the EKV charge-based model of the MOS transistor for the design and simulation of low-power analog and RF ICs. Clearly split into three parts, the authors systematically examine: the basic long-channel intrinsic charge-based model, including all the fundamental aspects of the EKV MOST model such as the basic large-signal static model, the noise model, and a discussion of temperature effects and matching properties; the extended charge-based model, presenting important information for understanding the operation of deep-submicron devices; the high-frequency model, setting out a complete MOS transistor model required for designing RF CMOS integrated circuits. Practising engineers and circuit designers in the semiconductor device and electronics systems industry will find this book a valuable guide to the modelling of MOS transistors for integrated circuits. It is also a useful reference for advanced students in electrical and computer engineering.
Publisher: John Wiley & Sons
ISBN: 0470855452
Category : Technology & Engineering
Languages : en
Pages : 328
Book Description
Modern, large-scale analog integrated circuits (ICs) are essentially composed of metal-oxide semiconductor (MOS) transistors and their interconnections. As technology scales down to deep sub-micron dimensions and supply voltage decreases to reduce power consumption, these complex analog circuits are even more dependent on the exact behavior of each transistor. High-performance analog circuit design requires a very detailed model of the transistor, describing accurately its static and dynamic behaviors, its noise and matching limitations and its temperature variations. The charge-based EKV (Enz-Krummenacher-Vittoz) MOS transistor model for IC design has been developed to provide a clear understanding of the device properties, without the use of complicated equations. All the static, dynamic, noise, non-quasi-static models are completely described in terms of the inversion charge at the source and at the drain taking advantage of the symmetry of the device. Thanks to its hierarchical structure, the model offers several coherent description levels, from basic hand calculation equations to complete computer simulation model. It is also compact, with a minimum number of process-dependant device parameters. Written by its developers, this book provides a comprehensive treatment of the EKV charge-based model of the MOS transistor for the design and simulation of low-power analog and RF ICs. Clearly split into three parts, the authors systematically examine: the basic long-channel intrinsic charge-based model, including all the fundamental aspects of the EKV MOST model such as the basic large-signal static model, the noise model, and a discussion of temperature effects and matching properties; the extended charge-based model, presenting important information for understanding the operation of deep-submicron devices; the high-frequency model, setting out a complete MOS transistor model required for designing RF CMOS integrated circuits. Practising engineers and circuit designers in the semiconductor device and electronics systems industry will find this book a valuable guide to the modelling of MOS transistors for integrated circuits. It is also a useful reference for advanced students in electrical and computer engineering.
CMOS Analog Design Using All-Region MOSFET Modeling
Author: Márcio Cherem Schneider
Publisher: Cambridge University Press
ISBN: 052111036X
Category : Computers
Languages : en
Pages : 505
Book Description
The essentials of analog circuit design with a unique all-region MOSFET modeling approach.
Publisher: Cambridge University Press
ISBN: 052111036X
Category : Computers
Languages : en
Pages : 505
Book Description
The essentials of analog circuit design with a unique all-region MOSFET modeling approach.
Modeling And Parameter Extraction Techniques Of Silicon-based Radio Frequency Devices
Author: Ao Zhang
Publisher: World Scientific
ISBN: 9811255377
Category : Technology & Engineering
Languages : en
Pages : 322
Book Description
This comprehensive compendium describes the basic modeling techniques for silicon-based semiconductor devices, introduces the basic concepts of silicon-based passive and active devices, and provides its state-of-the-art modeling and equivalent circuit parameter extraction methods.The unique reference text benefits practicing engineers, technicians, senior undergraduate and first-year graduate students working in the areas of RF, microwave and solid-state device, and integrated circuit design.
Publisher: World Scientific
ISBN: 9811255377
Category : Technology & Engineering
Languages : en
Pages : 322
Book Description
This comprehensive compendium describes the basic modeling techniques for silicon-based semiconductor devices, introduces the basic concepts of silicon-based passive and active devices, and provides its state-of-the-art modeling and equivalent circuit parameter extraction methods.The unique reference text benefits practicing engineers, technicians, senior undergraduate and first-year graduate students working in the areas of RF, microwave and solid-state device, and integrated circuit design.
Nano-scale CMOS Analog Circuits
Author: Soumya Pandit
Publisher: CRC Press
ISBN: 1466564288
Category : Technology & Engineering
Languages : en
Pages : 397
Book Description
Reliability concerns and the limitations of process technology can sometimes restrict the innovation process involved in designing nano-scale analog circuits. The success of nano-scale analog circuit design requires repeat experimentation, correct analysis of the device physics, process technology, and adequate use of the knowledge database. Starting with the basics, Nano-Scale CMOS Analog Circuits: Models and CAD Techniques for High-Level Design introduces the essential fundamental concepts for designing analog circuits with optimal performances. This book explains the links between the physics and technology of scaled MOS transistors and the design and simulation of nano-scale analog circuits. It also explores the development of structured computer-aided design (CAD) techniques for architecture-level and circuit-level design of analog circuits. The book outlines the general trends of technology scaling with respect to device geometry, process parameters, and supply voltage. It describes models and optimization techniques, as well as the compact modeling of scaled MOS transistors for VLSI circuit simulation. • Includes two learning-based methods: the artificial neural network (ANN) and the least-squares support vector machine (LS-SVM) method • Provides case studies demonstrating the practical use of these two methods • Explores circuit sizing and specification translation tasks • Introduces the particle swarm optimization technique and provides examples of sizing analog circuits • Discusses the advanced effects of scaled MOS transistors like narrow width effects, and vertical and lateral channel engineering Nano-Scale CMOS Analog Circuits: Models and CAD Techniques for High-Level Design describes the models and CAD techniques, explores the physics of MOS transistors, and considers the design challenges involving statistical variations of process technology parameters and reliability constraints related to circuit design.
Publisher: CRC Press
ISBN: 1466564288
Category : Technology & Engineering
Languages : en
Pages : 397
Book Description
Reliability concerns and the limitations of process technology can sometimes restrict the innovation process involved in designing nano-scale analog circuits. The success of nano-scale analog circuit design requires repeat experimentation, correct analysis of the device physics, process technology, and adequate use of the knowledge database. Starting with the basics, Nano-Scale CMOS Analog Circuits: Models and CAD Techniques for High-Level Design introduces the essential fundamental concepts for designing analog circuits with optimal performances. This book explains the links between the physics and technology of scaled MOS transistors and the design and simulation of nano-scale analog circuits. It also explores the development of structured computer-aided design (CAD) techniques for architecture-level and circuit-level design of analog circuits. The book outlines the general trends of technology scaling with respect to device geometry, process parameters, and supply voltage. It describes models and optimization techniques, as well as the compact modeling of scaled MOS transistors for VLSI circuit simulation. • Includes two learning-based methods: the artificial neural network (ANN) and the least-squares support vector machine (LS-SVM) method • Provides case studies demonstrating the practical use of these two methods • Explores circuit sizing and specification translation tasks • Introduces the particle swarm optimization technique and provides examples of sizing analog circuits • Discusses the advanced effects of scaled MOS transistors like narrow width effects, and vertical and lateral channel engineering Nano-Scale CMOS Analog Circuits: Models and CAD Techniques for High-Level Design describes the models and CAD techniques, explores the physics of MOS transistors, and considers the design challenges involving statistical variations of process technology parameters and reliability constraints related to circuit design.
Mosfet Modeling For Circuit Analysis And Design
Author: Carlos Galup-montoro
Publisher: World Scientific
ISBN: 9814477974
Category : Technology & Engineering
Languages : en
Pages : 445
Book Description
This is the first book dedicated to the next generation of MOSFET models. Addressed to circuit designers with an in-depth treatment that appeals to device specialists, the book presents a fresh view of compact modeling, having completely abandoned the regional modeling approach.Both an overview of the basic physics theory required to build compact MOSFET models and a unified treatment of inversion-charge and surface-potential models are provided. The needs of digital, analog and RF designers as regards the availability of simple equations for circuit designs are taken into account. Compact expressions for hand analysis or for automatic synthesis, valid in all operating regions, are presented throughout the book. All the main expressions for computer simulation used in the new generation compact models are derived.Since designers in advanced technologies are increasingly concerned with fluctuations, the modeling of fluctuations is strongly emphasized. A unified approach for both space (matching) and time (noise) fluctuations is introduced.
Publisher: World Scientific
ISBN: 9814477974
Category : Technology & Engineering
Languages : en
Pages : 445
Book Description
This is the first book dedicated to the next generation of MOSFET models. Addressed to circuit designers with an in-depth treatment that appeals to device specialists, the book presents a fresh view of compact modeling, having completely abandoned the regional modeling approach.Both an overview of the basic physics theory required to build compact MOSFET models and a unified treatment of inversion-charge and surface-potential models are provided. The needs of digital, analog and RF designers as regards the availability of simple equations for circuit designs are taken into account. Compact expressions for hand analysis or for automatic synthesis, valid in all operating regions, are presented throughout the book. All the main expressions for computer simulation used in the new generation compact models are derived.Since designers in advanced technologies are increasingly concerned with fluctuations, the modeling of fluctuations is strongly emphasized. A unified approach for both space (matching) and time (noise) fluctuations is introduced.
Ultra High-Speed CMOS Circuits
Author: Sam Gharavi
Publisher: Springer Science & Business Media
ISBN: 1461403057
Category : Technology & Engineering
Languages : en
Pages : 111
Book Description
The book covers the CMOS-based millimeter wave circuits and devices and presents methods and design techniques to use CMOS technology for circuits operating beyond 100 GHz. Coverage includes a detailed description of both active and passive devices, including modeling techniques and performance optimization. Various mm-wave circuit blocks are discussed, emphasizing their design distinctions from low-frequency design methodologies. This book also covers a device-oriented circuit design technique that is essential for ultra high speed circuits and gives some examples of device/circuit co-design that can be used for mm-wave technology.
Publisher: Springer Science & Business Media
ISBN: 1461403057
Category : Technology & Engineering
Languages : en
Pages : 111
Book Description
The book covers the CMOS-based millimeter wave circuits and devices and presents methods and design techniques to use CMOS technology for circuits operating beyond 100 GHz. Coverage includes a detailed description of both active and passive devices, including modeling techniques and performance optimization. Various mm-wave circuit blocks are discussed, emphasizing their design distinctions from low-frequency design methodologies. This book also covers a device-oriented circuit design technique that is essential for ultra high speed circuits and gives some examples of device/circuit co-design that can be used for mm-wave technology.
Modeling and Characterization of RF and Microwave Power FETs
Author: Peter Aaen
Publisher: Cambridge University Press
ISBN: 113946812X
Category : Technology & Engineering
Languages : en
Pages : 375
Book Description
This book is a comprehensive exposition of FET modeling, and is a must-have resource for seasoned professionals and new graduates in the RF and microwave power amplifier design and modeling community. In it, you will find descriptions of characterization and measurement techniques, analysis methods, and the simulator implementation, model verification and validation procedures that are needed to produce a transistor model that can be used with confidence by the circuit designer. Written by semiconductor industry professionals with many years' device modeling experience in LDMOS and III-V technologies, this was the first book to address the modeling requirements specific to high-power RF transistors. A technology-independent approach is described, addressing thermal effects, scaling issues, nonlinear modeling, and in-package matching networks. These are illustrated using the current market-leading high-power RF technology, LDMOS, as well as with III-V power devices.
Publisher: Cambridge University Press
ISBN: 113946812X
Category : Technology & Engineering
Languages : en
Pages : 375
Book Description
This book is a comprehensive exposition of FET modeling, and is a must-have resource for seasoned professionals and new graduates in the RF and microwave power amplifier design and modeling community. In it, you will find descriptions of characterization and measurement techniques, analysis methods, and the simulator implementation, model verification and validation procedures that are needed to produce a transistor model that can be used with confidence by the circuit designer. Written by semiconductor industry professionals with many years' device modeling experience in LDMOS and III-V technologies, this was the first book to address the modeling requirements specific to high-power RF transistors. A technology-independent approach is described, addressing thermal effects, scaling issues, nonlinear modeling, and in-package matching networks. These are illustrated using the current market-leading high-power RF technology, LDMOS, as well as with III-V power devices.
EMI-Resilient Amplifier Circuits
Author: Marcel J. van der Horst
Publisher: Springer Science & Business Media
ISBN: 3319005936
Category : Technology & Engineering
Languages : en
Pages : 316
Book Description
This book enables circuit designers to reduce the errors introduced by the fundamental limitations (noise, bandwith, and signal power) and electromagnetic interference (EMI) in negative-feedback amplifiers. The authors describe a systematic design approach for application specific negative-feedback amplifiers, with specified signal-to-error ratio (SER). This approach enables designers to calculate noise, bandwidth, EMI, and the required bias parameters of the transistors used in application specific amplifiers in order to meet the SER requirements.
Publisher: Springer Science & Business Media
ISBN: 3319005936
Category : Technology & Engineering
Languages : en
Pages : 316
Book Description
This book enables circuit designers to reduce the errors introduced by the fundamental limitations (noise, bandwith, and signal power) and electromagnetic interference (EMI) in negative-feedback amplifiers. The authors describe a systematic design approach for application specific negative-feedback amplifiers, with specified signal-to-error ratio (SER). This approach enables designers to calculate noise, bandwidth, EMI, and the required bias parameters of the transistors used in application specific amplifiers in order to meet the SER requirements.