Development of Non-polar, A-plane Gallium Nitride Templates by Hydride Vapor Phase Epitaxy

Development of Non-polar, A-plane Gallium Nitride Templates by Hydride Vapor Phase Epitaxy PDF Author: Adam Lyle Moldawer
Publisher:
ISBN:
Category :
Languages : en
Pages : 208

Get Book Here

Book Description

Development of Non-polar, A-plane Gallium Nitride Templates by Hydride Vapor Phase Epitaxy

Development of Non-polar, A-plane Gallium Nitride Templates by Hydride Vapor Phase Epitaxy PDF Author: Adam Lyle Moldawer
Publisher:
ISBN:
Category :
Languages : en
Pages : 208

Get Book Here

Book Description


Formation of Gallium Nitride Templates and Freestanding Substrates by Hydride Vapor Phase Epitaxy for Homoepitaxial Growth of III-nitride Devices

Formation of Gallium Nitride Templates and Freestanding Substrates by Hydride Vapor Phase Epitaxy for Homoepitaxial Growth of III-nitride Devices PDF Author: Adrian Daniel Williams
Publisher:
ISBN:
Category :
Languages : en
Pages : 190

Get Book Here

Book Description
The GaN samples grown for this dissertation were studied by various techniques to characterize their structural, optical, and electrical properties.

Structure of Nonpolar Gallium Nitride Films Grown by Hydride Vapor Phase Epitaxy

Structure of Nonpolar Gallium Nitride Films Grown by Hydride Vapor Phase Epitaxy PDF Author: Benjamin Allen Haskell
Publisher:
ISBN: 9780542281327
Category :
Languages : en
Pages : 382

Get Book Here

Book Description
Conventional c-plane (Al, In, Ga)N optoelectronic devices suffer from deleterious polarization effects. These polarization effects can be eliminated by growing devices on alternative orientations of GaN crystals, such as {11 ̄00} m-plane or {112 ̄0} a-plane films. Previous attempts to grow nonpolar GaN by HVPE, yielded rough and faceted surfaces that were unsuitable for substrate use.

Gallium Nitride Epitaxy by a Novel Hybrid VPE Technique

Gallium Nitride Epitaxy by a Novel Hybrid VPE Technique PDF Author: David J. Miller
Publisher: Stanford University
ISBN:
Category :
Languages : en
Pages : 131

Get Book Here

Book Description
Gallium nitride is an important material for the production of next-generation visible and near-UV optical devices, as well as for high temperature electronic amplifiers and circuits; however there has been no bulk method for the production of GaN substrates for device layer growth. Instead, thick GaN layers are heteroepitaxially deposited onto non-native substrates (usually sapphire) by one of two vapor phase epitaxy (VPE) techniques: MOVPE (metalorganic VPE) or HVPE (hydride VPE). Each method has its strengths and weaknesses: MOVPE has precise growth rate and layer thickness control but it is slow and expensive; HVPE is a low-cost method for high rate deposition of thick GaN, but it lacks the precise control and heterojunction layer growth required for device structures. Because of the large (14%) lattice mismatch, GaN grown on sapphire requires the prior deposition of a low temperature MOVPE nucleation layer using a second growth process in a separate deposition system. Here we present a novel hybrid VPE system incorporating elements of both techniques, allowing MOVPE and HVPE in a single growth run. In this way, a thick GaN layer can be produced directly on sapphire. GaN growth commences as small (50-100 nm diameter) coherent strained 3-dimensional islands which coalesce into a continuous film, after which 2-dimensional layer growth commences. The coalescence of islands imparts significant stress into the growing film, which increases with the film thickness until catastrophic breakage occurs, in-situ. Additionally, the mismatch in thermal expansion rates induces compressive stress upon cooling from the growth temperature of 1025°C. We demonstrate a growth technique that mitigates these stresses, by using a 2-step growth sequence: an initial high growth rate step resulting in a pitted but relaxed film, followed by a low growth rate smoothing layer. As a result, thick (> 50 [Mu]m) and freestanding films have been grown successfully. X-ray rocking curve linewidth of 105 arcseconds and 10K PL indicating no "yellow" emission indicate that the material quality is higher than that produced by conventional MOVPE. By further modifying the hybrid system to include a metallic Mn source, it is possible to grow a doped semi-insulating GaN template for use in high frequency electronics devices.

Comprehensive Semiconductor Science and Technology

Comprehensive Semiconductor Science and Technology PDF Author:
Publisher: Newnes
ISBN: 0080932282
Category : Science
Languages : en
Pages : 3572

Get Book Here

Book Description
Semiconductors are at the heart of modern living. Almost everything we do, be it work, travel, communication, or entertainment, all depend on some feature of semiconductor technology. Comprehensive Semiconductor Science and Technology, Six Volume Set captures the breadth of this important field, and presents it in a single source to the large audience who study, make, and exploit semiconductors. Previous attempts at this achievement have been abbreviated, and have omitted important topics. Written and Edited by a truly international team of experts, this work delivers an objective yet cohesive global review of the semiconductor world. The work is divided into three sections. The first section is concerned with the fundamental physics of semiconductors, showing how the electronic features and the lattice dynamics change drastically when systems vary from bulk to a low-dimensional structure and further to a nanometer size. Throughout this section there is an emphasis on the full understanding of the underlying physics. The second section deals largely with the transformation of the conceptual framework of solid state physics into devices and systems which require the growth of extremely high purity, nearly defect-free bulk and epitaxial materials. The last section is devoted to exploitation of the knowledge described in the previous sections to highlight the spectrum of devices we see all around us. Provides a comprehensive global picture of the semiconductor world Each of the work's three sections presents a complete description of one aspect of the whole Written and Edited by a truly international team of experts

Hydride vapour phase epitaxy growth, crystal properties and dopant incorporation in gallium nitride

Hydride vapour phase epitaxy growth, crystal properties and dopant incorporation in gallium nitride PDF Author: Patrick Hofmann
Publisher: BoD – Books on Demand
ISBN: 3752884924
Category : Science
Languages : en
Pages : 166

Get Book Here

Book Description
This dissertation employs doping to investigate basic gallium nitride (GaN) crystal properties and to solve challenges of the hydride vapour phase epitaxy (HVPE) growth process. Whereas the first chapter is a short introduction to the history of the GaN single crystal growth, the 2nd chapter introduces to current crystal growth techniques, discusses properties of the GaN material system and the resulting influence on the applicable crystal growth techniques. HVPE, as a vapour phase epitaxy crystal growth method will be explained in greater detail, with focus on the used vertical reactor and its capabilities for doping. The 3rd chapter then focusses on point defects in GaN, specifically on intentionally introduced extrinsic point defects used for doping purposes, i.e. to achieve p-type, n-type or semi-insulating behaviour. Different dopants will be reviewed before the diffusion of point defects in a solid will be discussed. The in-situ introduction of iron, manganese, and carbon during crystal growth is employed in chapter 4 to compensate the unintentional doping (UID) of the GaN crystals, and therefore to achieve truly semi-insulating behaviour of the HVPE GaN. However the focus of this chapter lies on the characterisation of the pyroelectric coefficient (p), as semi-insulating properties are a necessary requirement for the applied Sharp-Garn measurement method. The creation of tensile stress due to in-situ silicon doping during GaN crystal growth is the topic of the 5th chapter. The tensile stress generation effect will be reproduced and the strain inside the crystal will be monitored ex-situ employing Raman spectroscopy. The n-type doping is achieved by using a vapour phase doping line and a process is developed to hinder the tensile strain generation effect. The 6th chapter concentrates on the delivery of the doping precursor via a solid state doping line, a newly developed doping method. Similar to chapter 5, the doping line is characterised carefully before the germanium doping is employed to the GaN growth. The focus lies on the homogeneity of the germanium doping and it is compared compared to the silicon doping and the vapour phase doping line. Benefits and drawbacks are discussed in conjunction with the obtained results. The germanium doping via solid state doping line is applied to the HVPE GaN growth process to measure accurately growth process related properties unique to the applied set of GaN growth parameters.

III-Nitride Based Light Emitting Diodes and Applications

III-Nitride Based Light Emitting Diodes and Applications PDF Author: Tae-Yeon Seong
Publisher: Springer
ISBN: 9811037558
Category : Science
Languages : en
Pages : 498

Get Book Here

Book Description
The revised edition of this important book presents updated and expanded coverage of light emitting diodes (LEDs) based on heteroepitaxial GaN on Si substrates, and includes new chapters on tunnel junction LEDs, green/yellow LEDs, and ultraviolet LEDs. Over the last two decades, significant progress has been made in the growth, doping and processing technologies of III-nitride based semiconductors, leading to considerable expectations for nitride semiconductors across a wide range of applications. LEDs are already used in traffic signals, signage lighting, and automotive applications, with the ultimate goal of the global replacement of traditional incandescent and fluorescent lamps, thus reducing energy consumption and cutting down on carbon-dioxide emission. However, some critical issues must be addressed to allow the further improvements required for the large-scale realization of solid-state lighting, and this book aims to provide the readers with details of some contemporary issues on which the performance of LEDs is seriously dependent. Most importantly, it describes why there must be a breakthrough in the growth of high-quality nitride semiconductor epitaxial layers with a low density of dislocations, in particular, in the growth of Al-rich and In-rich GaN-based semiconductors. The quality of materials is directly dependent on the substrates used, such as sapphire and Si, and the book discusses these as well as topics such as efficiency droop, growth in different orientations, polarization, and chip processing and packaging technologies. Offering an overview of the state of the art in III-Nitride LED science and technology, the book will be a core reference for researchers and engineers involved with the developments of solid state lighting, and required reading for students entering the field.

Technology of Gallium Nitride Crystal Growth

Technology of Gallium Nitride Crystal Growth PDF Author: Dirk Ehrentraut
Publisher: Springer Science & Business Media
ISBN: 3642048307
Category : Science
Languages : en
Pages : 337

Get Book Here

Book Description
This book discusses the important technological aspects of the growth of GaN single crystals by HVPE, MOCVD, ammonothermal and flux methods for the purpose of free-standing GaN wafer production.

JJAP

JJAP PDF Author:
Publisher:
ISBN:
Category : Engineering
Languages : en
Pages : 926

Get Book Here

Book Description


Growth of Gallium Nitride and Indium Nitride Films and Nanostructured Materials by Hydride-metalorganic Vapor Phase Epitaxy

Growth of Gallium Nitride and Indium Nitride Films and Nanostructured Materials by Hydride-metalorganic Vapor Phase Epitaxy PDF Author: Hyun Jong Park
Publisher:
ISBN:
Category :
Languages : en
Pages : 266

Get Book Here

Book Description
Crack-free, 3 mum GaN films were grown on GaN/AlGaN/Si template at 850°C although cracks developed when the thickness exceeded 7 mum. It was possible, however, to grow crack-free polycrystalline 40 mum thick GaN on Si using InN NRs as a buffer material.