Development and Deployment of a Novel Deep-sea in Situ Bubble Sampling Instrument for Understanding the Fate of Methane in the Water Column

Development and Deployment of a Novel Deep-sea in Situ Bubble Sampling Instrument for Understanding the Fate of Methane in the Water Column PDF Author: Andrew S. Johnson (Lieutenant)
Publisher:
ISBN:
Category : Chemicals
Languages : en
Pages : 131

Get Book Here

Book Description
Methane (CH4) is a potent greenhouse gas that is often found in a solid, hydrate clathrate form in marine sediments along continental margins and will often escape from the seafloor and rise through the water column as bubbles. The estimated marine methane hydrate inventory is over 600 times greater than the current atmospheric concentration so the fate of this ebullitive methane flux is of great interest. Traditional methods of measuring this flux such as acoustic imaging, optical sensors, and modeling suffer from limited information regarding the bubbles’ composition. Studies that attempt to constrain CH4 bubble composition suffer from low spatiotemporal resolution and adaptability. The current study presents the design, development and deployment of a novel, in situ bubble sampling system, the Bubble Delivery System (BDS), to quantify gas chemical composition in the water column. The BDS was deployed at the Cascadia Margin – a region well known for its active CH4 bubble seeps – where 95 samples were collected from McArthur Ridge, Hydrate Ridge, Heceta Deep and Heceta Shallow over the course of seven remotely operated vehicle dives. By combining this approach with the use of an underwater mass spectrometer, in situ analysis of these samples indicated that the bubbles contained between 84.6 to 100% CH4 and exhibited a high level of variability both spatially and temporally. Bubbles emitted from Heceta Deep exhibited anomalously elevated levels of carbon dioxide compared to the other sites.

Development and Deployment of a Novel Deep-sea in Situ Bubble Sampling Instrument for Understanding the Fate of Methane in the Water Column

Development and Deployment of a Novel Deep-sea in Situ Bubble Sampling Instrument for Understanding the Fate of Methane in the Water Column PDF Author: Andrew S. Johnson (Lieutenant)
Publisher:
ISBN:
Category : Chemicals
Languages : en
Pages : 131

Get Book Here

Book Description
Methane (CH4) is a potent greenhouse gas that is often found in a solid, hydrate clathrate form in marine sediments along continental margins and will often escape from the seafloor and rise through the water column as bubbles. The estimated marine methane hydrate inventory is over 600 times greater than the current atmospheric concentration so the fate of this ebullitive methane flux is of great interest. Traditional methods of measuring this flux such as acoustic imaging, optical sensors, and modeling suffer from limited information regarding the bubbles’ composition. Studies that attempt to constrain CH4 bubble composition suffer from low spatiotemporal resolution and adaptability. The current study presents the design, development and deployment of a novel, in situ bubble sampling system, the Bubble Delivery System (BDS), to quantify gas chemical composition in the water column. The BDS was deployed at the Cascadia Margin – a region well known for its active CH4 bubble seeps – where 95 samples were collected from McArthur Ridge, Hydrate Ridge, Heceta Deep and Heceta Shallow over the course of seven remotely operated vehicle dives. By combining this approach with the use of an underwater mass spectrometer, in situ analysis of these samples indicated that the bubbles contained between 84.6 to 100% CH4 and exhibited a high level of variability both spatially and temporally. Bubbles emitted from Heceta Deep exhibited anomalously elevated levels of carbon dioxide compared to the other sites.

In-Situ Sampling and Characterization of Naturally Occurring Marine Methane Hydrate Using the D

In-Situ Sampling and Characterization of Naturally Occurring Marine Methane Hydrate Using the D PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The primary accomplishments of the JOI Cooperative Agreement with DOE/NETL in this quarter were the deployment of tools and measurement systems for testing on ODP Leg 201, which is intended to study hydrate deposits on the Peru margin as part of other scientific investigations. Additional accomplishments were related to the continuing evolution of tools and measurements systems in preparation for deployment on ODP Leg 204, Hydrate Ridge, offshore Oregon in July 2002. The design for PCS Gas Manifold was finalized and parts were procured to assemble the gas manifold and deploy this system with the Pressure Core Sampler (PCS) tool on ODP Leg 201. The PCS was deployed 17 times during ODP Leg 201 and successfully retrieved cores from a broad range of lithologies and sediment depths along the Peru margin. Eleven deployments were entirely successful, collecting between 0.5 and 1.0 meters of sediment at greater than 75% of hydrostatic pressure. The PCS gas manifold was used in conjunction with the Pressure Core Sampler (PCS) throughout ODP Leg 201 to measure the total volume and composition of gases recovered in sediment cores associated with methane hydrates. The results of these deployments will be the subject of a future progress report. The FUGRO Pressure Corer (FPC), one of the HYACE/HYACINTH pressure coring tools, and two FUGRO engineers were deployed on the D/V JOIDES Resolution during ODP Legs 201 to field-test this coring system at sites located offshore Peru. The HYACINTH project is a European Union (EU) funded effort to develop tools to characterize methane hydrate and measure physical properties under in-situ conditions. The field-testing of these tools provides a corollary benefit to DOE/NETL at no cost to this project. The opportunity to test these tools on the D/V JOIDES Resolution was negotiated as part of a cooperative agreement between JOI/ODP and the HYACINTH partners. The DVTP, DVTP-P, APC-methane, and APC-Temperature tools (ODP memory tools) were deployed onboard the R/V JOIDES Resolution and used extensively during ODP Leg 201. Preliminary results indicate successful deployments of these tools. An infrared-thermal imaging system (IR-TIS) was delivered to JOI/ODP for testing and use on ODP Leg 201 to identify methane hydrate intervals in the recovered cores. The results of these experiments will be the subject of a future progress report. This report presents an overview of the primary methods used for deploying the ODP memory tools and PCS on ODP Leg 201 and the preliminary operational results of this leg. Discussions regarding the laboratory analysis of the recovered cores and downhole measurements made during these deployments will be covered in a future progress report.

The Lifetime of Methane Bubbles Through Sediment and Water Column

The Lifetime of Methane Bubbles Through Sediment and Water Column PDF Author: Regina Katsman
Publisher: Frontiers Media SA
ISBN: 2832500153
Category : Science
Languages : en
Pages : 239

Get Book Here

Book Description


Chemical Transport by Methane Ebullition in a Freshwater Lake

Chemical Transport by Methane Ebullition in a Freshwater Lake PDF Author: Kyle Brook Delwiche
Publisher:
ISBN:
Category :
Languages : en
Pages : 251

Get Book Here

Book Description
Methane bubbling from lakes contributes significantly to atmospheric methane levels, and methane is second only to carbon dioxide in global warming potential. Microorganisms in aquatic sediments produce methane while consuming organic matter, and the majority of this methane is released via bubbling. Bubbles dissolve as they rise, and the fraction of original methane that dissolves versus escapes to the atmosphere is strongly influenced by bubble size. While bubble sizes are critical to methane fate, traditional methods of measuring bubbles sizes in situ are resource intensive (i.e. sonar or video cameras). In this work we design, build, and deploy a fleet of novel optical bubble size sensors capable of measuring methane bubbles in situ for long periods of time. Data from our field campaign on Upper Mystic Lake, MA illuminate spatial differences in bubble size distributions and provide an estimate of the contribution from methane bubble dissolution to dissolved methane accumulation. These results improve our understanding of processes governing the emission of this important greenhouse gas. In addition to transporting gas, bubbles effectively transport particles in water columns. This process has been used extensively in industry since the 1900s to separate chemicals of interest from bulk solutions. While bubbles also transport particulate matter in marine systems, to date very little work has focused on the possibility that methane bubbles transport particles in freshwater systems. We use laboratory and field experiments on Upper Mystic Lake to show that bubbles can transport arsenic-containing sediment particles to the surface of the lake from depths exceeding 15 m. While we estimate that arsenic transport is insignificant at the relatively modest methane bubbling levels in Upper Mystic Lake, other water bodies experience an order of magnitude more ebullition and bubbling may therefore constitute a significant contaminant flux in these systems. Furthermore, bubbles may also transport organisms (or pathogens) from the sediment to the water surface.

Deep-Sea Sampling Technology

Deep-Sea Sampling Technology PDF Author: Jiawang Chen
Publisher: Frontiers Media SA
ISBN: 2832526977
Category : Science
Languages : en
Pages : 145

Get Book Here

Book Description


Methane in deep sea hydrothermal plumes

Methane in deep sea hydrothermal plumes PDF Author: Cédric Boulart
Publisher:
ISBN:
Category :
Languages : en
Pages : 163

Get Book Here

Book Description


Spectroscopic Methods in Mineralogy and Geology

Spectroscopic Methods in Mineralogy and Geology PDF Author: Frank C. Hawthorne
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 1501508970
Category : Science
Languages : en
Pages : 716

Get Book Here

Book Description
Volume 18 of Reviews in Mineralogy provides a general introduction to the use of spectroscopic techniques in Earth Sciences. It gives an Introduction To Spectroscopic Methods and covers Symmetry, Group Theory And Quantum Mechanics; Spectrum-Fitting Methods; Infrared And Raman Spectroscopy; Inelastic Neutron Scattering; Vibrational Spectroscopy Of Hydrous Components; Optical Spectroscopy; Mossbauer Spectroscopy; MAS NMR Spectroscopy Of Minerals And Glasses; NMR Spectroscopy And Dynamic Processes In Mineralogy And Geochemistry; X-Ray Absorption Spectroscopy: Applications In Mineralogy ind Geochemistry; Electron Paramagnetic Resonance; Auger Electron And X-Ray Photelectron Spectroscopies and Luminescence, X-Ray Emission and New Spectroscopies. The authors of this volume presented a short course, entitled "Spectroscopic Methods in Mineralogy and Geology", May 13-15, 1988, in Hunt Valley, Maryland.

The Use of Dispersants in Marine Oil Spill Response

The Use of Dispersants in Marine Oil Spill Response PDF Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309478219
Category : Nature
Languages : en
Pages : 341

Get Book Here

Book Description
Whether the result of an oil well blowout, vessel collision or grounding, leaking pipeline, or other incident at sea, each marine oil spill will present unique circumstances and challenges. The oil type and properties, location, time of year, duration of spill, water depth, environmental conditions, affected biomes, potential human community impact, and available resources may vary significantly. Also, each spill may be governed by policy guidelines, such as those set forth in the National Response Plan, Regional Response Plans, or Area Contingency Plans. To respond effectively to the specific conditions presented during an oil spill, spill responders have used a variety of response optionsâ€"including mechanical recovery of oil using skimmers and booms, in situ burning of oil, monitored natural attenuation of oil, and dispersion of oil by chemical dispersants. Because each response method has advantages and disadvantages, it is important to understand specific scenarios where a net benefit may be achieved by using a particular tool or combination of tools. This report builds on two previous National Research Council reports on dispersant use to provide a current understanding of the state of science and to inform future marine oil spill response operations. The response to the 2010 Deepwater Horizon spill included an unprecedented use of dispersants via both surface application and subsea injection. The magnitude of the spill stimulated interest and funding for research on oil spill response, and dispersant use in particular. This study assesses the effects and efficacy of dispersants as an oil spill response tool and evaluates trade-offs associated with dispersant use.

Capabilities of GHASTLI for Geo-gas Hydrate Research

Capabilities of GHASTLI for Geo-gas Hydrate Research PDF Author: James S. Booth
Publisher:
ISBN:
Category : Laboratories
Languages : en
Pages : 13

Get Book Here

Book Description


Thriving on Our Changing Planet: A Decadal Strategy for Earth Observation from Space

Thriving on Our Changing Planet: A Decadal Strategy for Earth Observation from Space PDF Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309492432
Category : Science
Languages : en
Pages : 29

Get Book Here

Book Description
We live on a dynamic Earth shaped by both natural processes and the impacts of humans on their environment. It is in our collective interest to observe and understand our planet, and to predict future behavior to the extent possible, in order to effectively manage resources, successfully respond to threats from natural and human-induced environmental change, and capitalize on the opportunities â€" social, economic, security, and more â€" that such knowledge can bring. By continuously monitoring and exploring Earth, developing a deep understanding of its evolving behavior, and characterizing the processes that shape and reshape the environment in which we live, we not only advance knowledge and basic discovery about our planet, but we further develop the foundation upon which benefits to society are built. Thriving on Our Changing Planet: A Decadal Strategy for Earth Observation from Space (National Academies Press, 2018) provides detailed guidance on how relevant federal agencies can ensure that the United States receives the maximum benefit from its investments in Earth observations from space, while operating within realistic cost constraints. This short booklet, designed to be accessible to the general public, provides a summary of the key ideas and recommendations from the full decadal survey report.