Developing Multi-scale Models for Water Quality Management in Drinking Water Distribution Systems

Developing Multi-scale Models for Water Quality Management in Drinking Water Distribution Systems PDF Author: Ahmed A. Abokifa
Publisher:
ISBN:
Category : Electronic dissertations
Languages : en
Pages : 358

Get Book Here

Book Description
Drinking water supply systems belong to the group of critical infrastructure systems that support the socioeconomic development of our modern societies. In addition, drinking water infrastructure plays a key role in the protection of public health by providing a common access to clean and safe water for all our municipal, industrial, and firefighting purposes. Yet, in the United States, much of our national water infrastructure is now approaching the end of its useful life while investments in its replacement and rehabilitation have been consistently inadequate. Furthermore, the aging water infrastructure has often been operated empirically, and the embracement of modern technologies in infrastructure monitoring and management has been limited. Deterioration of the water infrastructure and poor water quality management practices both have serious impacts on public health due to the increased likelihood of contamination events and waterborne disease outbreaks.Water quality reaching the consumers' taps is largely dependent on a group of physical, chemical, and biological interactions that take place as the water transports through the pipes of the distribution system and inside premise plumbing. These interactions include the decay of disinfectant residuals, the formation of disinfection by-products (DBPs), the corrosion of pipe materials, and the growth and accumulation of microbial species. In addition, the highly dynamic nature of the system's hydraulics adds another layer of complexity as they control the fate and transport of the various constituents. On the other hand, the huge scale of water distribution systems contributes dramatically to this deterioration mainly due to the long transport times between treatment and consumption points. Hence, utilities face a considerable challenge to efficiently manage the water quality in their aging distribution systems, and to stay in compliance with all regulatory standards.By integrating on-line monitoring with real-time simulation and control, smart water networks offer a promising paradigm shift to the way utilities manage water quality in their systems. Yet, multiple scientific gaps and engineering challenges still stand in the way towards the successful implementation of such advanced systems. In general, a fundamental understanding of the different physical, chemical, and biological processes that control the water quality is a crucial first step towards developing useful modeling tools. Furthermore, water quality models need to be accurate; to properly simulate the concentrations of the different constituents at the points of consumption, and fast; to allow their implementation in real-time optimization algorithms that sample different operational scenarios in real-time. On-line water quality monitoring tools need be both reliable and inexpensive to enable the ubiquitous surveillance of the system at all times.The main objective of this dissertation is to create advanced computational tools for water quality management in water distribution systems through the development and application of a multi-scale modeling framework. Since the above-mentioned interactions take place at different length and time scales, this work aims at developing computational models that are capable of providing the best description of each of the processes of interest by properly simulating each of its underlying phenomena at its appropriate scale of resolution. Molecular scale modeling using tools of ab-initio quantum chemical calculations and molecular dynamics simulations is employed to provide detailed descriptions of the chemical reactions happening at the atomistic level with the aim of investigating reaction mechanisms and developing novel materials for environmental sensing. Continuum scale reactive-transport models are developed for simulating the spatial and temporal distributions of the different compounds at the pipe level considering the effects of the dynamic hydraulics in the system driven by the spatiotemporal variability in water demands. System scale models are designed to optimize the operation of the different elements of the system by performing large-scale simulations coupled with optimization algorithms to identify the optimal operational strategies as a basis for accurate decision-making and superior water quality management.In conclusion, the computational models developed in this study can either be implemented as stand-alone tools for simulating the fundamental processes dictating the water quality at different scales of resolution, or be integrated into a unified framework in which information from the small scale models are propagated into the larger scale models to render a high fidelity representation of these processes.

Developing Multi-scale Models for Water Quality Management in Drinking Water Distribution Systems

Developing Multi-scale Models for Water Quality Management in Drinking Water Distribution Systems PDF Author: Ahmed A. Abokifa
Publisher:
ISBN:
Category : Electronic dissertations
Languages : en
Pages : 358

Get Book Here

Book Description
Drinking water supply systems belong to the group of critical infrastructure systems that support the socioeconomic development of our modern societies. In addition, drinking water infrastructure plays a key role in the protection of public health by providing a common access to clean and safe water for all our municipal, industrial, and firefighting purposes. Yet, in the United States, much of our national water infrastructure is now approaching the end of its useful life while investments in its replacement and rehabilitation have been consistently inadequate. Furthermore, the aging water infrastructure has often been operated empirically, and the embracement of modern technologies in infrastructure monitoring and management has been limited. Deterioration of the water infrastructure and poor water quality management practices both have serious impacts on public health due to the increased likelihood of contamination events and waterborne disease outbreaks.Water quality reaching the consumers' taps is largely dependent on a group of physical, chemical, and biological interactions that take place as the water transports through the pipes of the distribution system and inside premise plumbing. These interactions include the decay of disinfectant residuals, the formation of disinfection by-products (DBPs), the corrosion of pipe materials, and the growth and accumulation of microbial species. In addition, the highly dynamic nature of the system's hydraulics adds another layer of complexity as they control the fate and transport of the various constituents. On the other hand, the huge scale of water distribution systems contributes dramatically to this deterioration mainly due to the long transport times between treatment and consumption points. Hence, utilities face a considerable challenge to efficiently manage the water quality in their aging distribution systems, and to stay in compliance with all regulatory standards.By integrating on-line monitoring with real-time simulation and control, smart water networks offer a promising paradigm shift to the way utilities manage water quality in their systems. Yet, multiple scientific gaps and engineering challenges still stand in the way towards the successful implementation of such advanced systems. In general, a fundamental understanding of the different physical, chemical, and biological processes that control the water quality is a crucial first step towards developing useful modeling tools. Furthermore, water quality models need to be accurate; to properly simulate the concentrations of the different constituents at the points of consumption, and fast; to allow their implementation in real-time optimization algorithms that sample different operational scenarios in real-time. On-line water quality monitoring tools need be both reliable and inexpensive to enable the ubiquitous surveillance of the system at all times.The main objective of this dissertation is to create advanced computational tools for water quality management in water distribution systems through the development and application of a multi-scale modeling framework. Since the above-mentioned interactions take place at different length and time scales, this work aims at developing computational models that are capable of providing the best description of each of the processes of interest by properly simulating each of its underlying phenomena at its appropriate scale of resolution. Molecular scale modeling using tools of ab-initio quantum chemical calculations and molecular dynamics simulations is employed to provide detailed descriptions of the chemical reactions happening at the atomistic level with the aim of investigating reaction mechanisms and developing novel materials for environmental sensing. Continuum scale reactive-transport models are developed for simulating the spatial and temporal distributions of the different compounds at the pipe level considering the effects of the dynamic hydraulics in the system driven by the spatiotemporal variability in water demands. System scale models are designed to optimize the operation of the different elements of the system by performing large-scale simulations coupled with optimization algorithms to identify the optimal operational strategies as a basis for accurate decision-making and superior water quality management.In conclusion, the computational models developed in this study can either be implemented as stand-alone tools for simulating the fundamental processes dictating the water quality at different scales of resolution, or be integrated into a unified framework in which information from the small scale models are propagated into the larger scale models to render a high fidelity representation of these processes.

Predictive Models for Water Quality in Distribution Systems

Predictive Models for Water Quality in Distribution Systems PDF Author: J. Clement
Publisher: American Water Works Association
ISBN: 184339913X
Category : Science
Languages : en
Pages : 132

Get Book Here

Book Description
There are two groups of specialists involved in the development and application of water quality models, each of which have a different perspective on the use of models: Academics and scientists - chemistry specialists and microbiologists who develop the models. Practitioners - modelers and distribution engineers who use them to solve problems. There are limitations and constraints in the characterization of the underlying processes and the practical application of models to distribution networks, which require further research. The objectives of the research were to characterize the current state of predictive distribution system water quality models and to identify critical research needs for their improvement. The project reviewed both the development and application of models. The report is intended to both steer future research and to act as a general reference on water quality modeling. The report combines a literature review with the practical experience of the project team. The content of a draft report was discussed at an international workshop attended by academics, engineers, scientists, and hydraulic modelers with the objective of agreeing on specific research needs necessary to improve predictive modeling for water quality in distribution systems. The conclusions of the report are derived from the workshop and form the basis of 11 specific research briefs that have been submitted to AwwaRF for consideration of funding. Researchers often focus on modeling the individual processes that control water quality rather than fully modeling water quality throughout distribution systems. For these "process models" to be applied to real distribution networks, they need to be extended to take in account the physical characteristics of the system?the special and temporal variations in flow, velocity and water age, and the effects of mixing water that has traveled along different flow paths.

Water Quality Management

Water Quality Management PDF Author: M.B. Beck
Publisher: Springer Science & Business Media
ISBN: 3642823947
Category : Science
Languages : en
Pages : 113

Get Book Here

Book Description
During 1978-1982 the International Institute for Applied Systems Analysis (IIASA) was responsible for a research project on Environmental Quality Control and Management. The project was begun under the direction of Professor O. F. Vasiliev (from the Institute of Hydrodynamics of the Siberian Branch of the USSR Academy of Sciences) and was subsequently led by myself. This review is very much a re'fiection of that IIASA project. The major themes of the IIASA project were: (i) research into the methodological aspects of modeling river and lake sys tems [some of the principal results of this research appear in M. B. Beck and G. van Straten (eds. ) (1983), Uncertainty and Forecasting of Water Quality (Springer, Berlin (West)), and in K. Fedra (1983), Environmental Modeling Under Uncertainty: Monte Carlo Simulation (IIASA Research Report RR-83-28)]; (ii) case studies in the application of mathematical models to lake eutrophi cation control [results of which are summarized in L. Somlyody, S. Hero dek, and J. Fischer (eds. ) (1983), Eutrophication of Shallow Lakes: Model ing and Management (The Lake Balaton Case Study) (IIASA Collaborative Proceedings CP-83-S3), and in K. Fedra (1983), A Modular Approach to Comprehensive System Simulation: A Case Study of Lakes and Watersheds (in W. K. Lauenroth, G. V. Skogerboe, and M. Flug (eds. ), Analysis of Ecological Systems: State-of-the-Art in Ecological Modelling, pp. 195-204. Elsevier, Amsterdam)]; iv (iii) a policy study of operational water qua,lity management [M. B. Beck (1981), Operational Water Quality Management: Beyond Planning and Design (IIASA Executive Report ER-7)].

Modeling Water Quality in Distribution Systems

Modeling Water Quality in Distribution Systems PDF Author: Robert Maurice Clark
Publisher: Amer Water Works Assn
ISBN: 9781583218167
Category : Business & Economics
Languages : en
Pages : 400

Get Book Here

Book Description
Rev. ed. of: Modeling water quality in drinking water distribution systems / Robert M. Clark, Walter M. Grayman. 1998.

Stochastic Water Demand Modelling

Stochastic Water Demand Modelling PDF Author: Mirjam Blokker
Publisher: IWA Publishing
ISBN: 1780400284
Category : Science
Languages : en
Pages : 181

Get Book Here

Book Description
Water quality processes in the drinking water distribution network are strongly influenced by the flow velocity and residence time of the water in the network. In order to understand how the water quality changes in the drinking water distribution network, a good understanding of hydraulics is required. Specifically in the periphery of the network, where customers are connected, the hydraulics can change rapidly. During the night time the water is almost stagnant and the residence time increases. In the morning, when everybody gets up and flushes the toilet and takes a shower, high flow velocities can occur. During the remainder of the day flow velocities are low. The stochastic endues model SIMDEUM was developed to simulate water use on a small time scale (1 s) and small spatial scale (per fixture). SIMDEUM enables a good model of flow velocities, residence times and the connected water quality processes in the water distribution network. Stochastic Water Demand Modelling: Hydraulics in Water Distribution Networks describes the requirements of hydraulics in water quality modelling and provides insight into the development of detailed residential and non-residential water demand models. The book illustrates the use of detailed demand models in water quality models with respect to the variation in residence times and the relation with particle accumulation and resuspension. The models are compared to measurements in several real drinking water distribution networks.

Drinking Water Distribution Systems

Drinking Water Distribution Systems PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309103061
Category : Science
Languages : en
Pages : 405

Get Book Here

Book Description
Protecting and maintaining water distributions systems is crucial to ensuring high quality drinking water. Distribution systems-consisting of pipes, pumps, valves, storage tanks, reservoirs, meters, fittings, and other hydraulic appurtenances-carry drinking water from a centralized treatment plant or well supplies to consumers' taps. Spanning almost 1 million miles in the United States, distribution systems represent the vast majority of physical infrastructure for water supplies, and thus constitute the primary management challenge from both an operational and public health standpoint. Recent data on waterborne disease outbreaks suggest that distribution systems remain a source of contamination that has yet to be fully addressed. This report evaluates approaches for risk characterization and recent data, and it identifies a variety of strategies that could be considered to reduce the risks posed by water-quality deteriorating events in distribution systems. Particular attention is given to backflow events via cross connections, the potential for contamination of the distribution system during construction and repair activities, maintenance of storage facilities, and the role of premise plumbing in public health risk. The report also identifies advances in detection, monitoring and modeling, analytical methods, and research and development opportunities that will enable the water supply industry to further reduce risks associated with drinking water distribution systems.

Multi-constituent Simulation and Optimization Models for Water Quality Management

Multi-constituent Simulation and Optimization Models for Water Quality Management PDF Author: Richard John Hughto
Publisher:
ISBN:
Category : Genesee River (Pa. and N.Y.)
Languages : en
Pages : 494

Get Book Here

Book Description


Selected Water Resources Abstracts

Selected Water Resources Abstracts PDF Author:
Publisher:
ISBN:
Category : Hydrology
Languages : en
Pages : 962

Get Book Here

Book Description


M32 Computer Modeling of Water Distribution Systems

M32 Computer Modeling of Water Distribution Systems PDF Author: Awwa
Publisher:
ISBN: 9781625762528
Category : Technology & Engineering
Languages : en
Pages : 277

Get Book Here

Book Description
Revised edition of: Computer modeling of water distribution systems / by Laredo Robinson, Jerry A. Edwards, Lindle D. Willnow.

Handbook of Catchment Management

Handbook of Catchment Management PDF Author: Robert C. Ferrier
Publisher: John Wiley & Sons
ISBN: 9781444307689
Category : Science
Languages : en
Pages : 560

Get Book Here

Book Description
This book addresses the fundamental requirement for aninterdisciplinary catchment based approach to managing andprotecting water resources that crucially includes anunderstanding of land use and its management. In thisapproach the hydrological cycle links mountains to the sea, andecosystems in rivers, groundwaters, lakes, wetlands, estuaries andcoasts forming an essential continuum directly influenced by humanactivity. The book provides a synthesis of current and future thinking incatchment management, and shows how the specific problems thatarise in water use policy can be addressed within the context of anintegrated approach to management. The book is written for advancedstudents, researchers, fellow academics and water sectorprofessionals such as planners and regulators. The intention is tohighlight examples and case studies that have resonance not onlywithin natural sciences and engineering but with academicsin other fields such as socio-economics, law and policy.