Design of Wideband Switched-capacitor Delta-sigma Analog-to-digital Converters

Design of Wideband Switched-capacitor Delta-sigma Analog-to-digital Converters PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
HKUST Call Number: Thesis ECED 2009 Wang.

Design of Wideband Switched-capacitor Delta-sigma Analog-to-digital Converters

Design of Wideband Switched-capacitor Delta-sigma Analog-to-digital Converters PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
HKUST Call Number: Thesis ECED 2009 Wang.

Wideband Discrete-time Delta-sigma Analog-to-digital Converters with Shifted Loop Delays

Wideband Discrete-time Delta-sigma Analog-to-digital Converters with Shifted Loop Delays PDF Author: Xin Meng
Publisher:
ISBN:
Category : Analog-to-digital converters
Languages : en
Pages : 79

Get Book Here

Book Description
Low-distortion architecture is widely used in wideband discrete-time switched-capacitor delta-sigma ADC design. However, it suffers from the power-hungry active adder and critical timing for quantization and dynamic element matching (DEM). To solve this problem, this dissertation presents a delta-sigma modulator architecture with shifted loop delays. In this project, shifted loop delays (SLD) technique can relax the speed requirements of the quantizer and the dynamic element matching (DEM) block, and eliminate the active adder. An implemented 0.18 um CMOS prototype with the proposed architecture provided 81.6 dB SNDR, 81.8 dB dynamic range, and -95.6 dB THD in a signal bandwidth of 4 MHz. It dissipates 19.2 mW with a 1.6 V power supply. The conventional low-distortion ADC was also implemented on the same chip for comparison. The new circuit has superior performance, and dissipates 25% less power (19.2 mW vs. 24.9 mW) than the conventional one. The figure-of-merit for the ADC with SLD is among the best reported for wideband discrete-time ADCs, and is almost 40% better than that of the conventional ADC. The second project describes two techniques to enhance the noise shaping function in the proposed low-distortion [delta sigma] modulator with shifted loop delays. One is self-noise coupling based on low-distortion [delta sigma] structure; the other is noise-coupled time-interleaved [delta sigma] modulator. Both architectures use shifted loop delays to relax the critical timing constraints in the modulator feedback path, then to save power consumption of each block in the modulators. Two [delta sigma] ADCs were analyzed and simulated in a 0.18 um CMOS technology. The simulation results highly verify the effectiveness of the proposed structure. The third system describes the design technique for double-sampled wideband [delta sigma] ADCs with shifted loop delays (SLD). The added loop delay in the feedback branch relaxes the critical timing for DEM logic. Delay shifting can be combined with such useful techniques as low-distortion circuitry and noise coupling for wideband [delta sigma] modulators. The presented techniques relax the timing for inherent quantization delay, reduce the speed requirements for the critical circuit blocks, and achieve power efficiency by replacing the power-hungry blocks normally used in the modulators. Analysis of all architectures allows the choice of the most power-efficient topology for a wideband [delta sigma] modulator. The proposed second-order and third-order [delta sigma] modulators were designed and simulated to verify the effectiveness of the shifted loop delays techniques.

Systematic Design of Sigma-Delta Analog-to-Digital Converters

Systematic Design of Sigma-Delta Analog-to-Digital Converters PDF Author: Ovidiu Bajdechi
Publisher: Springer Science & Business Media
ISBN: 9781402079450
Category : Computers
Languages : en
Pages : 216

Get Book Here

Book Description
Systematic Design of Sigma-Delta Analog-to-Digital Converters describes the issues related to the sigma-delta analog-to-digital converters (ADCs) design in a systematic manner: from the top level of abstraction represented by the filters defining signal and noise transfer functions (STF, NTF), passing through the architecture level where topology-related performance is calculated and simulated, and finally down to parameters of circuit elements like resistors, capacitors, and amplifier transconductances used in individual integrators. The systematic approach allows the evaluation of different loop filters (order, aggressiveness, discrete-time or continuous-time implementation) with quantizers varying in resolution. Topologies explored range from simple single loops to multiple cascaded loops with complex structures including more feedbacks and feedforwards. For differential circuits, with switched-capacitor integrators for discrete-time (DT) loop filters and active-RC for continuous-time (CT) ones, the passive integrator components are calculated and the power consumption is estimated, based on top-level requirements like harmonic distortion and noise budget. This unified, systematic approach to choosing the best sigma-delta ADC implementation for a given design target yields an interesting solution for a high-resolution, broadband (DSL-like) ADC operated at low oversampling ratio, which is detailed down to transistor-level schematics. The target audience of Systematic Design of Sigma-Delta Analog-to-Digital Converters are engineers designing sigma-delta ADCs and/or switched-capacitor and continuous-time filters, both beginners and experienced. It is also intended for students/academics involved in sigma-delta and analog CAD research.

Design Techniques for Wideband Low-power Delta-Sigma Analog-to-digital Converters

Design Techniques for Wideband Low-power Delta-Sigma Analog-to-digital Converters PDF Author: Yan Wang
Publisher:
ISBN:
Category : Analog-to-digital converters
Languages : en
Pages : 338

Get Book Here

Book Description
Delta-Sigma analog-to-digital converters (ADCs) are traditionally used in high quality audio systems, instrumentation and measurement (I&M) and biomedical devices. With the continued downscaling of CMOS technology, they are becoming popular in wideband applications such as wireless and wired communication systems,high-definition television and radar systems. There are two general realizations of a [Delta-Sigma] modulator. One is based on the discrete-time (DT) switched-capacitor (SC) circuitry and the other employs continuous-time (CT) circuitry. Compared to a CT structure, the DT [Delta-Sigma] ADC is easier to analyze and design, is more robust to process variations and jitter noise, and is more flexible in the multi-mode applications. On the other hand, the CT [Delta-Sigma] ADC does not suffer from the strict settling accuracy requirement for the loop filter and thus can achieve lower power dissipation and higher sampling frequency than its DT counterpart. In this thesis, both DT and CT [Delta-Sigma] ADCs are investigated. Several design innovations, in both system-level and circuit-level, are proposed to achieve lower power consumption and wider signal bandwidth. For DT [Delta-Sigma] ADCs, a new dynamic-biasing scheme is proposed to reduce opamp bias current and the associated signal-dependent harmonic distortion is minimized by using the low-distortion architecture. The technique was verified in a 2.5MHz BW and 13bit dynamic range DT [Delta-Sigma] ADC. In addition, a second-order noise coupling technique is presented to save two integrators for the loop filter, and to achieve low power dissipation. Also, a direct-charge-transfer (DCT) technique is suggested to reduce the speed requirements of the adder, which is also preferable in wideband low-power applications. For CT [Delta-Sigma] ADCs, a wideband low power CT 2-2 MASH has been designed. High linearity performance was achieved by using a modified low-distortion technique, and the modulator achieves higher noise-shaping ability than the single stage structure due to the inter-stage gain. Also, the quantization noise leakage due to analog circuit non-idealities can be adaptively compensated by a designed digital calibration filter. Using a 90nm process, simulation of the modulator predicts a 12bit resolution within 20MHz BW and consumes only 25mW for analog circuitry. In addition, the noise-coupling technique is investigated and proposed for the design of CT [Delta-Sigma] ADCs and it is promising to achieve low power dissipation for wideband applications. Finally, the application of noise-coupling technique is extended and introduced to high-accuracy incremental data converters. Low power dissipation can be expected.

High Efficiency Wideband Low-power Delta-sigma Modulators

High Efficiency Wideband Low-power Delta-sigma Modulators PDF Author: Sang Hyeon Lee
Publisher:
ISBN:
Category : Analog-to-digital converters
Languages : en
Pages : 91

Get Book Here

Book Description
Delta-sigma analog-to-digital converters traditionally have been used for low speed, high resolution applications such as measurements, sensors, voice and audio systems. Through continued device scaling in CMOS technology and architectural and circuit level design innovations, they have even become popular for wideband, high dynamic range applications such as wired and wireless communication systems. Therefore, power efficient wideband low power delta-sigma data converters that bridges analog and digital have become mandatory for popular mobile applications today. In this dissertation, two architectural innovations and a development and realization of a state-of-the-art delta-sigma analog to digital converter with effective design techniques in both architectural and circuit levels are presented. The first one is timing-relaxed double noise coupling which effectively provides 2nd order noise shaping in the noise transfer function and overcomes stringent timing requirement for quantization and DEM. The second one presented is a noise shaping SAR quantizer, which provides one order of noise shaping in the noise transfer function. It uses a charge redistribution SAR quantizer and is applied to a timing-relaxed lowdistortion delta-sigma modulator which is suitable for adopting SAR quantizer. Finally a cascade switched capacitor delta-sigma analog-to-digital converter suitable for WLAN applications is presented. It uses a noise folding free double sampling technique and an improved low-distortion architecture with an embedded-adder integrator. The prototype chip is fabricated with a double poly, 4 metal, 0.18[micro]m CMOS process. The measurement result achieves 73.8 dB SNDR over 10 MHz bandwidth. The figure of merit defined by FoM = P/(2 x BW x 2[superscript ENOB]) is 0.27 pJ/conv-step. The measurement results indicate that the proposed design ideas are effective and useful for wideband, low power delta-sigma analog-to-digital converters with low oversampling ratio.

Wideband Continuous-time ΣΔ ADCs, Automotive Electronics, and Power Management

Wideband Continuous-time ΣΔ ADCs, Automotive Electronics, and Power Management PDF Author: Andrea Baschirotto
Publisher: Springer
ISBN: 3319416707
Category : Technology & Engineering
Languages : en
Pages : 357

Get Book Here

Book Description
This book is based on the 18 tutorials presented during the 25th workshop on Advances in Analog Circuit Design. Expert designers present readers with information about a variety of topics at the frontier of analog circuit design, including low-power and energy-efficient analog electronics, with specific contributions focusing on the design of continuous-time sigma-delta modulators, automotive electronics, and power management. This book serves as a valuable reference to the state-of-the-art, for anyone involved in analog circuit research and development.

Continuous-Time Delta-Sigma Modulators for High-Speed A/D Conversion

Continuous-Time Delta-Sigma Modulators for High-Speed A/D Conversion PDF Author: James A. Cherry
Publisher: Springer Science & Business Media
ISBN: 0306470527
Category : Technology & Engineering
Languages : en
Pages : 272

Get Book Here

Book Description
Among analog-to-digital converters, the delta-sigma modulator has cornered the market on high to very high resolution converters at moderate speeds, with typical applications such as digital audio and instrumentation. Interest has recently increased in delta-sigma circuits built with a continuous-time loop filter rather than the more common switched-capacitor approach. Continuous-time delta-sigma modulators offer less noisy virtual ground nodes at the input, inherent protection against signal aliasing, and the potential to use a physical rather than an electrical integrator in the first stage for novel applications like accelerometers and magnetic flux sensors. More significantly, they relax settling time restrictions so that modulator clock rates can be raised. This opens the possibility of wideband (1 MHz or more) converters, possibly for use in radio applications at an intermediate frequency so that one or more stages of mixing might be done in the digital domain. Continuous-Time Delta-Sigma Modulators for High-Speed A/D Conversion: Theory, Practice and Fundamental Performance Limits covers all aspects of continuous-time delta-sigma modulator design, with particular emphasis on design for high clock speeds. The authors explain the ideal design of such modulators in terms of the well-understood discrete-time modulator design problem and provide design examples in Matlab. They also cover commonly-encountered non-idealities in continuous-time modulators and how they degrade performance, plus a wealth of material on the main problems (feedback path delays, clock jitter, and quantizer metastability) in very high-speed designs and how to avoid them. They also give a concrete design procedure for a real high-speed circuit which illustrates the tradeoffs in the selection of key parameters. Detailed circuit diagrams, simulation results and test results for an integrated continuous-time 4 GHz band-pass modulator for A/D conversion of 1 GHz analog signals are also presented. Continuous-Time Delta-Sigma Modulators for High-Speed A/D Conversion: Theory, Practice and Fundamental Performance Limits concludes with some promising modulator architectures and a list of the challenges that remain in this exciting field.

Understanding Delta-Sigma Data Converters

Understanding Delta-Sigma Data Converters PDF Author: Shanthi Pavan
Publisher: John Wiley & Sons
ISBN: 1119258278
Category : Technology & Engineering
Languages : en
Pages : 596

Get Book Here

Book Description
This new edition introduces operation and design techniques for Sigma-Delta converters in physical and conceptual terms, and includes chapters which explore developments in the field over the last decade Includes information on MASH architectures, digital-to-analog converter (DAC) mismatch and mismatch shaping Investigates new topics including continuous-time ΔΣ analog-to-digital converters (ADCs) principles and designs, circuit design for both continuous-time and discrete-time ΔΣ ADCs, decimation and interpolation filters, and incremental ADCs Provides emphasis on practical design issues for industry professionals

Delta-Sigma Data Converters

Delta-Sigma Data Converters PDF Author: Steven R. Norsworthy
Publisher: Wiley-IEEE Press
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 522

Get Book Here

Book Description
This comprehensive guide offers a detailed treatment of the analysis, design, simulation and testing of the full range of today's leading delta-sigma data converters. Written by professionals experienced in all practical aspects of delta-sigma modulator design, Delta-Sigma Data Converters provides comprehensive coverage of low and high-order single-bit, bandpass, continuous-time, multi-stage modulators as well as advanced topics, including idle-channel tones, stability, decimation and interpolation filter design, and simulation.

Sigma-Delta Converters: Practical Design Guide

Sigma-Delta Converters: Practical Design Guide PDF Author: Jose M. de la Rosa
Publisher: John Wiley & Sons
ISBN: 111927575X
Category : Technology & Engineering
Languages : en
Pages : 567

Get Book Here

Book Description
Thoroughly revised and expanded to help readers systematically increase their knowledge and insight about Sigma-Delta Modulators Sigma-Delta Modulators (SDMs) have become one of the best choices for the implementation of analog/digital interfaces of electronic systems integrated in CMOS technologies. Compared to other kinds of Analog-to-Digital Converters (ADCs), Σ∆Ms cover one of the widest conversion regions of the resolution-versus-bandwidth plane, being the most efficient solution to digitize signals in an increasingly number of applications, which span from high-resolution low-bandwidth digital audio, sensor interfaces, and instrumentation, to ultra-low power biomedical systems and medium-resolution broadband wireless communications. Following the spirit of its first edition, Sigma-Delta Converters: Practical Design Guide, 2nd Edition takes a comprehensive look at SDMs, their diverse types of architectures, circuit techniques, analysis synthesis methods, and CAD tools, as well as their practical design considerations. It compiles and updates the current research reported on the topic, and explains the multiple trade-offs involved in the whole design flow of Sigma-Delta Modulators—from specifications to chip implementation and characterization. The book follows a top-down approach in order to provide readers with the necessary understanding about recent advances, trends, and challenges in state-of-the-art Σ∆Ms. It makes more emphasis on two key points, which were not treated so deeply in the first edition: It includes a more detailed explanation of Σ∆Ms implemented using Continuous-Time (CT) circuits, going from system-level synthesis to practical circuit limitations. It provides more practical case studies and applications, as well as a deeper description of the synthesis methodologies and CAD tools employed in the design of Σ∆ converters. Sigma-Delta Converters: Practical Design Guide, 2nd Edition serves as an excellent textbook for undergraduate and graduate students in electrical engineering as well as design engineers working on SD data-converters, who are looking for a uniform and self-contained reference in this hot topic. With this goal in mind, and based on the feedback received from readers, the contents have been revised and structured to make this new edition a unique monograph written in a didactical, pedagogical, and intuitive style.