Design of RF CMOS Front-End for Ultra-Wideband Wireless Receiver

Design of RF CMOS Front-End for Ultra-Wideband Wireless Receiver PDF Author: 黃哲揚
Publisher:
ISBN:
Category :
Languages : en
Pages : 94

Get Book Here

Book Description

Design of RF CMOS Front-End for Ultra-Wideband Wireless Receiver

Design of RF CMOS Front-End for Ultra-Wideband Wireless Receiver PDF Author: 黃哲揚
Publisher:
ISBN:
Category :
Languages : en
Pages : 94

Get Book Here

Book Description


Silicon-Based RF Front-Ends for Ultra Wideband Radios

Silicon-Based RF Front-Ends for Ultra Wideband Radios PDF Author: Aminghasem Safarian
Publisher: Springer Science & Business Media
ISBN: 1402067224
Category : Technology & Engineering
Languages : en
Pages : 97

Get Book Here

Book Description
A comprehensive study of silicon-based distributed architectures in wideband circuits are presented in this book. Novel circuit architectures for ultra-wideband (UWB) wireless technologies are described. The book begins with an introduction of several transceiver architectures for UWB. The discussion then focuses on RF front-end of the UWB radio. Therefore, the book will be of interest to RF circuit designers and students.

Development of RF CMOS Receiver Front-ends for Ultra-wideband Communications

Development of RF CMOS Receiver Front-ends for Ultra-wideband Communications PDF Author: Xin Guan
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Ultra-Wideband (UWB) technology has become one of the hottest topics in wireless communications, for it provides cost-effective, power-efficient, high bandwidth solution for relaying data in the immediate area (up to 10 meters). This work demonstrates two different solutions for the RF front-end designs in the UWB receivers, one is distributed topology, and the other is based on traditional lumped element topology. The distributed amplifier is one of the attractive candidates for UWB Low Noise Amplifier (LNA). The design, analysis and operation of the distributed amplifiers will be presented. A distributed amplifier is designed with Coplanar Waveguide (CPW) transmission lines in 0.25-[micron] CMOS process for time domain UWB applications. New design techniques and new topologies are developed to enhance the power-efficiency and reduce the chip area. A compact and high performance distributed amplifier with Patterned Grounded Shield (PGS) inductors is developed in 0.25-[micron] CMOS process. The amplifier has a measurement result of 7.2dB gain, 4.2-6dB noise figure, and less than -10dB return loss through 0-11GHz. A new distributed amplifier implementing cascade common source gain cells is presented in 0.18-[micron] CMOS. The new amplifier demonstrates a high gain of 16dB at a power consumption of 100mW, and a gain of 10dB at a low power consumption of 19mW. A UWB LNA utilizing resistive shunt feedback technique is reported in 0.18-[micron] CMOS process. The measurement results of the UWB LNA demonstrate a maximum gain of 10.5dB and a noise figure of 3.3-4.5dB from 3-9.5GHz, while only consuming 9mW power. Based on the distributed amplifier and resistive shunt-feedback amplifier designs, two UWB RF front-ends are developed. One is a distributed LNA-Mixer. Unlike the conventional distributed mixer, which can only deliver low gain and high noise figure, the proposed distributed LNA-Mixer demonstrates 12-14dB gain,4-5dB noise figure and higher than 10dB return loss at RF and LO ports over 2-16GHz. To overcome the power consumption and chip area problems encountered in distributed circuits, another UWB RF front-end is also designed with lumped elements. This front-end, employing resistive shunt-feedback technique into its LNA design, can achieve a gain of 12dB and noise figure of 8-10dB through 3-10GHz, the return loss of less than -10dB from 3- 10GHz at RF port, and less than -7dB at LO port, while only consuming 25mA current from 1.8V voltage supply.

Design of CMOS RFIC Ultra-Wideband Impulse Transmitters and Receivers

Design of CMOS RFIC Ultra-Wideband Impulse Transmitters and Receivers PDF Author: Cam Nguyen
Publisher: Springer
ISBN: 3319531077
Category : Technology & Engineering
Languages : en
Pages : 118

Get Book Here

Book Description
This book presents the design of ultra-wideband (UWB) impulse-based transmitter and receiver frontends, operating within the 3.1-10.6 GHz frequency band, using CMOS radio-frequency integrated-circuits (RFICs). CMOS RFICs are small, cheap, low power devices, better suited for direct integration with digital ICs as compared to those using III-V compound semiconductor devices. CMOS RFICs are thus very attractive for RF systems and, in fact, the principal choice for commercial wireless markets. The book comprises seven chapters. The first chapter gives an introduction to UWB technology and outlines its suitability for high resolution sensing and high-rate, short-range ad-hoc networking and communications. The second chapter provides the basics of CMOS RFICs needed for the design of the UWB RFIC transmitter and receiver presented in this book. It includes the design fundamentals, lumped and distributed elements for RFIC, layout, post-layout simulation, and measurement. The third chapter discusses the basics of UWB systems including UWB advantages and applications, signals, basic modulations, transmitter and receiver frontends, and antennas. The fourth chapter addresses the design of UWB transmitters including an overview of basic components, design of pulse generator, BPSK modulator design, and design of a UWB tunable transmitter. Chapter 5 presents the design of UWB receivers including the design of UWB low-noise amplifiers, correlators, and a UWB 1 receiver. Chapter 6 covers the design of a UWB uniplanar antenna. Finally, a summary and conclusion is given in Chapter 7.

Design of Ultra-wideband RF Front-end

Design of Ultra-wideband RF Front-end PDF Author: Stanley Bo-Ting Wang
Publisher:
ISBN:
Category :
Languages : en
Pages : 308

Get Book Here

Book Description


Essentials of RF Front-end Design and Testing

Essentials of RF Front-end Design and Testing PDF Author: Ibrahim A. Haroun
Publisher: John Wiley & Sons
ISBN: 1394210612
Category : Technology & Engineering
Languages : en
Pages : 292

Get Book Here

Book Description
Essentials of RF Front-end Design and Testing Highly comprehensive text delivering the RF system essentials required to understand, develop, and evaluate the performance of RF wireless systems Essentials of RF Front-end Design and Testing: A Practical Guide for Wireless Systems is a system-oriented book which provides several wireless communication disciplines in one volume. The book covers a wide range of topics, including antenna fundamentals, phased array antenna and MIMOs that are crucial for the latest 5G mmWave and future 6G wireless systems, high-frequency transmission lines, RF building blocks that are necessary to understand how various RF subsystems are interrelated and implemented in wireless systems, and test setups for conducted and Over-The-Air (OTA) transmitter and receiver tests. The text enables readers to understand, develop, and evaluate the performance of RF wireless systems. The text focuses on RF system performance and testing rather than mathematical proofs, which are available in the provided references. Although the book is intended for testing and building RF system prototypes, it has the sufficient theoretical background needed for RF systems design and testing. Each chapter includes learning objectives, review questions, and references. Sample topics covered in the book include: An overview of cellular phone systems, 5G NR wireless technology, MIMO technology, terahertz communications for 6G wireless technology, and modulation and multiplexing Analog and digital modulation techniques, including AM, SSB, FM, FSK, PSK, QAM, SSFH, DSSS, and OFDM High-frequency transmission lines, S-parameters, low-noise amplifier, RF mixers, filters, power amplifiers, frequency synthesizers, circulators/isolators, directional couplers, RF switches, and RF phase shifters Antenna basics, including antenna gain, radiation pattern, input impedance, polarization, and antenna noise temperature; microstrip antenna, antenna array, propagation path loss, compact antenna test range (CATR), and test setups for antenna measurements. Basics of MIMO and beamforming technology, including analog, digital, and hybrid beamforming Test setups for characterizing the key RF performance parameters of 5G New Radio base station transmitters and receivers. Essentials of RF Front-end Design and Testing: A Practical Guide for Wireless Systems is a highly comprehensive resource on the subject and is intended for graduate engineers and technologists involved in designing, developing, and testing wireless systems, along with undergraduate/graduate students, enhancing their learning experience of RF subsystems/systems characterization.

Design of a 3.1-4.8 GHZ RF Front-end for an Ultra Wideband Receiver

Design of a 3.1-4.8 GHZ RF Front-end for an Ultra Wideband Receiver PDF Author: Pushkar Sharma
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
IEEE 802.15 High Rate Alternative PHY task group (TG3a) is working to define a protocol for Wireless Personal Area Networks (WPANs) which makes it possible to attain data rates of greater than 110Mbps. Ultra Wideband (UWB) technology utilizing frequency band of 3.168 GHz - 10.6 GHz is an emerging solution to this with data rates of 110, 200 and 480 Mbps. Initially, UWB mode I devices using only 3.168 GHz - 4.752GHz have been proposed. Low Noise Amplifier (LNA) and I-Q mixers are key components constituting the RF front-end. Performance of these blocks is very critical to the overall performance of the receiver. In general, main considerations for the LNA are low noise, 50 broadband input matching, high gain with maximum flatness and good linearity. For the mixers, it is essential to attain low flicker noise performance coupled with good conversion gain. Proposed LNA architecture is a derivative of inductive source degenerated topology. Broadband matching at the LNA output is achieved using LC band-pass filter. To obtain high gain with maximum flatness, an LC band-pass filter is used at its output. Proposed LNA achieved a gain of 15dB, noise figure of less than 2.6dB and IIP3 of more than-7dBm. Mixer is a modified version of double balanced Gilbert cell topology where both I and Q channel mixers are merged together. Frequency response of each sub-band is matched by using an additional inductor, which further improves the noise figure and conversion gain. Current bleeding scheme is used to further reduce the low frequency noise. Mixer achieves average conversion gain of 14.5dB, IIP3 more than 6dBm and Double Side Band (DSB) noise figure less than 9dB. Maximum variation in conversion gain is desired to be less than 1dB. Both LNA and mixers are designed to be fabricated in TSMC 0.18 [mu]m CMOS technology.

CMOS Cellular Receiver Front-Ends

CMOS Cellular Receiver Front-Ends PDF Author: Johan Janssens
Publisher: Springer Science & Business Media
ISBN: 0306473046
Category : Technology & Engineering
Languages : en
Pages : 267

Get Book Here

Book Description
CMOS Cellular Receiver Front-Ends: from Specification to Realization deals with the design of the receive path of a highly-integrated CMOS cellular transceiver for the GSM-1800 cellular system. The complete design trajectory is covered, starting from the documents describing the standard down to the systematic development of CMOS receiver ICs that comply to the standard. The design of CMOS receivers is tackled at all abstraction levels: from architecture level, via circuit level, down to the device level, and the other way around. The theoretical core of the book discusses the fundamental and more advanced aspects of RF CMOS design. It focuses specifically on all aspects of the design of high-performance CMOS low-noise amplifiers.

Ultra Wideband

Ultra Wideband PDF Author: Ranjit Gharpurey
Publisher: Springer Science & Business Media
ISBN: 0387692789
Category : Technology & Engineering
Languages : en
Pages : 207

Get Book Here

Book Description
This book is a compilation of chapters on various aspects of Ultra Wideband. The book includes chapters on Ultra Wideband transceiver implementations, pulse-based systems and one on the implementation for the WiMedia/MBOFDM approach. Another chapter discusses the implementation of the physical layer baseband, including the ADC and post-ADC processing required in the UWB system. Future advances such as multiantenna UWB solutions are also discussed.

CMOS Wireless Transceiver Design

CMOS Wireless Transceiver Design PDF Author: Jan Crols
Publisher: Springer Science & Business Media
ISBN: 1475747845
Category : Technology & Engineering
Languages : en
Pages : 249

Get Book Here

Book Description
The world of wireless communications is changing very rapidly since a few years. The introduction of digital data communication in combination with digital signal process ing has created the foundation for the development of many new wireless applications. High-quality digital wireless networks for voice communication with global and local coverage, like the GSM and DECT system, are only faint and early examples of the wide variety of wireless applications that will become available in the remainder of this decade. The new evolutions in wireless communications set new requirements for the trans ceivers (transmitter-receivers). Higher operating frequencies, a lower power consump tion and a very high degree of integration, are new specifications which ask for design approaches quite different from the classical RF design techniques. The integrata bility and power consumption reduction of the digital part will further improve with the continued downscaling of technologies. This is however completely different for the analog transceiver front-end, the part which performs the interfacing between the antenna and the digital signal processing. The analog front-end's integratability and power consumption are closely related to the physical limitations of the transceiver topology and not so much to the scaling of the used technology. Chapter 2 gives a detailed study of the level of integration in current transceiver realization and analyzes their limitations. In chapter 3 of this book the complex signal technique for the analysis and synthesis of multi-path receiver and transmitter topologies is introduced.