Design and Post Processing for Metal Additive Manufacturing

Design and Post Processing for Metal Additive Manufacturing PDF Author: Bartlomiej Wysocki
Publisher: Mdpi AG
ISBN: 9783036598864
Category : Technology & Engineering
Languages : en
Pages : 0

Get Book Here

Book Description
Metal additive manufacturing (AM) has gained significant attention due to its ability to produce functional, net-shape parts using laser, electron beam, or binder jetting methods in various industrial sectors. Recent advancements in AM have opened up new opportunities for design freedom and the fabrication of complex geometries such as cellular solids, metamaterials, or biomimetic materials that are not easily achievable using conventional methods. Today, these objects can be created using computer-aided design (CAD) models and elemental or alloyed metallic powders. This Special Issue of Materials, titled "Design and Post Processing for Metal Additive Manufacturing", sought submissions on the design of elements with predicted microstructure and mechanical properties, the use of artificial intelligence/machine learning (AI/ML) in AM, numerical algorithms for AM, and μ-CT magining for quality control. While AM's powder bed manufacturing provides the possibility of fabricating objects of any shape in one production step, it does come with some disadvantages. A major drawback is the need to generate support for the fabricated parts to dissipate the heat generated during the 3D printing process and minimize the geometrical distortions caused by internal stresses from metallic powders. This Special Issue also covers computer simulations and improved fabrication protocols that can help reduce these issues.

Design and Post Processing for Metal Additive Manufacturing

Design and Post Processing for Metal Additive Manufacturing PDF Author: Bartlomiej Wysocki
Publisher: Mdpi AG
ISBN: 9783036598864
Category : Technology & Engineering
Languages : en
Pages : 0

Get Book Here

Book Description
Metal additive manufacturing (AM) has gained significant attention due to its ability to produce functional, net-shape parts using laser, electron beam, or binder jetting methods in various industrial sectors. Recent advancements in AM have opened up new opportunities for design freedom and the fabrication of complex geometries such as cellular solids, metamaterials, or biomimetic materials that are not easily achievable using conventional methods. Today, these objects can be created using computer-aided design (CAD) models and elemental or alloyed metallic powders. This Special Issue of Materials, titled "Design and Post Processing for Metal Additive Manufacturing", sought submissions on the design of elements with predicted microstructure and mechanical properties, the use of artificial intelligence/machine learning (AI/ML) in AM, numerical algorithms for AM, and μ-CT magining for quality control. While AM's powder bed manufacturing provides the possibility of fabricating objects of any shape in one production step, it does come with some disadvantages. A major drawback is the need to generate support for the fabricated parts to dissipate the heat generated during the 3D printing process and minimize the geometrical distortions caused by internal stresses from metallic powders. This Special Issue also covers computer simulations and improved fabrication protocols that can help reduce these issues.

Precision Metal Additive Manufacturing

Precision Metal Additive Manufacturing PDF Author: Richard Leach
Publisher: CRC Press
ISBN: 0429791283
Category : Technology & Engineering
Languages : en
Pages : 419

Get Book Here

Book Description
Additive manufacturing (AM) is a fast-growing sector with the ability to evoke a revolution in manufacturing due to its almost unlimited design freedom and its capability to produce personalised parts locally and with efficient material use. AM companies, however, still face technological challenges such as limited precision due to shrinkage, built-in stresses and limited process stability and robustness. Moreover, often post-processing is needed due to high roughness and remaining porosity. Qualified, trained personnel are also in short supply. In recent years, there have been dramatic improvements in AM design methods, process control, post-processing, material properties and material range. However, if AM is going to gain a significant market share, it must be developed into a true precision manufacturing method. The production of precision parts relies on three principles: Production is robust (i.e. all sensitive parameters can be controlled). Production is predictable (for example, the shrinkage that occurs is acceptable because it can be predicted and compensated in the design). Parts are measurable (as without metrology, accuracy, repeatability and quality assurance cannot be known). AM of metals is inherently a high-energy process with many sensitive and inter-related process parameters, making it susceptible to thermal distortions, defects and process drift. The complete modelling of these processes is beyond current computational power, and novel methods are needed to practicably predict performance and inform design. In addition, metal AM produces highly textured surfaces and complex surface features that stretch the limits of contemporary metrology. With so many factors to consider, there is a significant shortage of background material on how to inject precision into AM processes. Shortage in such material is an important barrier for a wider uptake of advanced manufacturing technologies, and a comprehensive book is thus needed. This book aims to inform the reader how to improve the precision of metal AM processes by tackling the three principles of robustness, predictability and metrology, and by developing computer-aided engineering methods that empower rather than limit AM design. Richard Leach is a professor in metrology at the University of Nottingham and heads up the Manufacturing Metrology Team. Prior to this position, he was at the National Physical Laboratory from 1990 to 2014. His primary love is instrument building, from concept to final installation, and his current interests are the dimensional measurement of precision and additive manufactured structures. His research themes include the measurement of surface topography, the development of methods for measuring 3D structures, the development of methods for controlling large surfaces to high resolution in industrial applications and the traceability of X-ray computed tomography. He is a leader of several professional societies and a visiting professor at Loughborough University and the Harbin Institute of Technology. Simone Carmignato is a professor in manufacturing engineering at the University of Padua. His main research activities are in the areas of precision manufacturing, dimensional metrology and industrial computed tomography. He is the author of books and hundreds of scientific papers, and he is an active member of leading technical and scientific societies. He has been chairman, organiser and keynote speaker for several international conferences, and received national and international awards, including the Taylor Medal from CIRP, the International Academy for Production Engineering.

Post-Processing Techniques for Metal-Based Additive Manufacturing

Post-Processing Techniques for Metal-Based Additive Manufacturing PDF Author: Hao Wang
Publisher: CRC Press
ISBN: 1000935590
Category : Technology & Engineering
Languages : en
Pages : 311

Get Book Here

Book Description
This book shares insights on post-processing techniques adopted to achieve precision-grade surfaces of additive manufactured metals including material characterization techniques and the identified material properties. Post-processes are discussed from support structure removal and heat treatment to the material removal processes including hybrid manufacturing. Also discussed are case studies on unique applications of additive manufactured metals as an exemplary of the considerations taken during post-processing design and selection. Addresses the critical aspect of post-processing for metal additive manufacturing Provides systematic introduction of pertinent materials Demonstrates post-process technique selection with the enhanced understanding of material characterization methods and evaluation Includes in-depth validation of ultra-precision machining technology Reviews precision fabrication of industrial-grade titanium alloys, steels, and aluminium alloys, with additive manufacturing technology The book is aimed at researchers, professionals, and graduate students in advanced manufacturing, additive manufacturing, machining, and materials processing.

Additive Manufacturing of Metals: The Technology, Materials, Design and Production

Additive Manufacturing of Metals: The Technology, Materials, Design and Production PDF Author: Li Yang
Publisher: Springer
ISBN: 3319551280
Category : Technology & Engineering
Languages : en
Pages : 172

Get Book Here

Book Description
This book offers a unique guide to the three-dimensional (3D) printing of metals. It covers various aspects of additive, subtractive, and joining processes used to form three-dimensional parts with applications ranging from prototyping to production. Examining a variety of manufacturing technologies and their ability to produce both prototypes and functional production-quality parts, the individual chapters address metal components and discuss some of the important research challenges associated with the use of these technologies. As well as exploring the latest technologies currently under development, the book features unique sections on electron beam melting technology, material lifting, and the importance this science has in the engineering context. Presenting unique real-life case studies from industry, this book is also the first to offer the perspective of engineers who work in the field of aerospace and transportation systems, and who design components and manufacturing networks. Written by the leading experts in this field at universities and in industry, it provides a comprehensive textbook for students and an invaluable guide for practitioners

Precision Metal Additive Manufacturing

Precision Metal Additive Manufacturing PDF Author: Richard Leach
Publisher: CRC Press
ISBN: 0429791275
Category : Technology & Engineering
Languages : en
Pages : 357

Get Book Here

Book Description
Additive manufacturing (AM) is a fast-growing sector with the ability to evoke a revolution in manufacturing due to its almost unlimited design freedom and its capability to produce personalised parts locally and with efficient material use. AM companies, however, still face technological challenges such as limited precision due to shrinkage, built-in stresses and limited process stability and robustness. Moreover, often post-processing is needed due to high roughness and remaining porosity. Qualified, trained personnel are also in short supply. In recent years, there have been dramatic improvements in AM design methods, process control, post-processing, material properties and material range. However, if AM is going to gain a significant market share, it must be developed into a true precision manufacturing method. The production of precision parts relies on three principles: Production is robust (i.e. all sensitive parameters can be controlled). Production is predictable (for example, the shrinkage that occurs is acceptable because it can be predicted and compensated in the design). Parts are measurable (as without metrology, accuracy, repeatability and quality assurance cannot be known). AM of metals is inherently a high-energy process with many sensitive and inter-related process parameters, making it susceptible to thermal distortions, defects and process drift. The complete modelling of these processes is beyond current computational power, and novel methods are needed to practicably predict performance and inform design. In addition, metal AM produces highly textured surfaces and complex surface features that stretch the limits of contemporary metrology. With so many factors to consider, there is a significant shortage of background material on how to inject precision into AM processes. Shortage in such material is an important barrier for a wider uptake of advanced manufacturing technologies, and a comprehensive book is thus needed. This book aims to inform the reader how to improve the precision of metal AM processes by tackling the three principles of robustness, predictability and metrology, and by developing computer-aided engineering methods that empower rather than limit AM design. Richard Leach is a professor in metrology at the University of Nottingham and heads up the Manufacturing Metrology Team. Prior to this position, he was at the National Physical Laboratory from 1990 to 2014. His primary love is instrument building, from concept to final installation, and his current interests are the dimensional measurement of precision and additive manufactured structures. His research themes include the measurement of surface topography, the development of methods for measuring 3D structures, the development of methods for controlling large surfaces to high resolution in industrial applications and the traceability of X-ray computed tomography. He is a leader of several professional societies and a visiting professor at Loughborough University and the Harbin Institute of Technology. Simone Carmignato is a professor in manufacturing engineering at the University of Padua. His main research activities are in the areas of precision manufacturing, dimensional metrology and industrial computed tomography. He is the author of books and hundreds of scientific papers, and he is an active member of leading technical and scientific societies. He has been chairman, organiser and keynote speaker for several international conferences, and received national and international awards, including the Taylor Medal from CIRP, the International Academy for Production Engineering.

Solid State Additive Manufacturing

Solid State Additive Manufacturing PDF Author: Amlan Kar
Publisher: CRC Press
ISBN: 1003803709
Category : Technology & Engineering
Languages : en
Pages : 292

Get Book Here

Book Description
The text focuses on discussing the solid-state deformation behavior of materials in additive manufacturing processes. It highlights the process optimization and bonding of different layers during layer-by-layer deposition of different materials in Solid-State. It covers the design, process, and advancement of solid-state additive manufacturing methods. • Covers the fundamentals of materials processing, including the stress–strain–temperature correlation in solid-state processing and manufacturing. • Discusses solid-state additive manufacturing methods, and optimization strategies for the fabrication of additive manufacturing products. • Showcases the mechanisms associated with improvement in mechanical properties of Solid-State additive manufacturing products. • Provides a comprehensive discussion on microstructural stability and homogeneity in mechanical properties. • Presents hybrid solid-state process for fabrication of multilayer components and composite materials. • Provides a detailed review of laser-based post-processing techniques The text focuses on the Solid-State additive manufacturing techniques for the fabrication of industrially relevant products. It gives in-depth information on the fundamental aspects, hybridization of the processes, fabrication of different materials, improvement in product performance, and Internet of Things enabled manufacturing. The text covers crucial topics, including hybrid Solid- State additive manufacturing, cold spray additive manufacturing, online defect detection of products, and post-processing of additively manufactured components. These subjects are significant in advancing additive manufacturing technology and ensuring the quality and efficiency of the produced components. It will serve as an ideal reference text for senior undergraduate and graduate students, and researchers in fields such as mechanical engineering, aerospace engineering, manufacturing engineering, and production engineering. .

Design for Additive Manufacturing

Design for Additive Manufacturing PDF Author: Roland Lachmayer
Publisher: Springer Nature
ISBN: 3662684632
Category :
Languages : en
Pages : 262

Get Book Here

Book Description


Additive Manufacturing of Metals

Additive Manufacturing of Metals PDF Author: John O. Milewski
Publisher: Springer
ISBN: 3319582054
Category : Technology & Engineering
Languages : en
Pages : 351

Get Book Here

Book Description
This engaging volume presents the exciting new technology of additive manufacturing (AM) of metal objects for a broad audience of academic and industry researchers, manufacturing professionals, undergraduate and graduate students, hobbyists, and artists. Innovative applications ranging from rocket nozzles to custom jewelry to medical implants illustrate a new world of freedom in design and fabrication, creating objects otherwise not possible by conventional means. The author describes the various methods and advanced metals used to create high value components, enabling readers to choose which process is best for them. Of particular interest is how harnessing the power of lasers, electron beams, and electric arcs, as directed by advanced computer models, robots, and 3D printing systems, can create otherwise unattainable objects. A timeline depicting the evolution of metalworking, accelerated by the computer and information age, ties AM metal technology to the rapid evolution of global technology trends. Charts, diagrams, and illustrations complement the text to describe the diverse set of technologies brought together in the AM processing of metal. Extensive listing of terms, definitions, and acronyms provides the reader with a quick reference guide to the language of AM metal processing. The book directs the reader to a wealth of internet sites providing further reading and resources, such as vendors and service providers, to jump start those interested in taking the first steps to establishing AM metal capability on whatever scale. The appendix provides hands-on example exercises for those ready to engage in experiential self-directed learning.

A Practical Guide to Design for Additive Manufacturing

A Practical Guide to Design for Additive Manufacturing PDF Author: Olaf Diegel
Publisher: Springer
ISBN: 9811382816
Category : Technology & Engineering
Languages : en
Pages : 226

Get Book Here

Book Description
This book provides a wealth of practical guidance on how to design parts to gain the maximum benefit from what additive manufacturing (AM) can offer. It begins by describing the main AM technologies and their respective advantages and disadvantages. It then examines strategic considerations in the context of designing for additive manufacturing (DfAM), such as designing to avoid anisotropy, designing to minimize print time, and post-processing, before discussing the economics of AM. The following chapters dive deeper into computational tools for design analysis and the optimization of AM parts, part consolidation, and tooling applications. They are followed by an in-depth chapter on designing for polymer AM and applicable design guidelines, and a chapter on designing for metal AM and its corresponding design guidelines. These chapters also address health and safety, certification and quality aspects. A dedicated chapter covers the multiple post-processing methods for AM, offering the reader practical guidance on how to get their parts from the AM machine into a shape that is ready to use. The book’s final chapter outlines future applications of AM. The main benefit of the book is its highly practical approach: it provides directly applicable, “hands-on” information and insights to help readers adopt AM in their industry

Additive Manufacturing with Metals

Additive Manufacturing with Metals PDF Author: Sanjay Joshi
Publisher: Springer Nature
ISBN: 3031370694
Category : Technology & Engineering
Languages : en
Pages : 669

Get Book Here

Book Description
This textbook and reference provides a comprehensive treatment of additive manufacturing (AM) for metals, including design and digital work flows, process science and reliability, metallic systems, quality assurance, and applications. The book is rooted in the fundamental science necessary to develop and understand AM technologies, as well as the application of engineering principles covering several disciplines to successfully exploit this important technology. As additive manufacturing of metals is the fastest growing subset of this transformative technology, with the potential to make the widest impact to industrial production, Metals Additive Manufacturing: Design, Processes, Materials, Quality Assurance, and Applications is ideal for students in a range of engineering disciplines and practitioners working in aerospace, automotive, medical device manufacturing industries.