Design and Development of Electrocatalysts and Their Microenvironments for Applications in Fuel Cells

Design and Development of Electrocatalysts and Their Microenvironments for Applications in Fuel Cells PDF Author: Jose Andres Zamora Zeledon
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Electrocatalysis plays a crucial role in a wide range of renewable and sustainable energy technologies, which are required to create a carbon-neutral or carbon-negative energy ecosystem, ultimately fostering the long-term prosperity of humankind. The oxygen reduction reaction (ORR) is key in electrochemical energy conversion and storage technologies such as fuel cells and metal-air batteries, which, for instance, have the potential to help decarbonize transportation and provide clean intermittent renewable energy storage. However, cheaper electrocatalyst materials with improved ORR activity, 4e--product selectivity, and stability are needed to deploy these promising technologies at a large scale. Anion exchange membrane fuel cells (AEMFCs) have emerged as a promising complementary alternative to the more mature proton exchange membrane fuel cells (PEMFCs) because the alkaline environment in AEMFCs allows for improved ORR kinetics and wider material stability compared to in the acidic conditions in PEMFCs. Moreover, diversifying ORR catalysts beyond conventional Pt-based materials is crucial for H2 FCs to achieve large scale deployment and thrive as a resilient and robust energy technology. Ag, which is two orders of magnitude cheaper than Pt, has emerged as a promising active, stable, and selective non-precious metal alkaline ORR catalyst. Moreover, Ag-bimetallics are an interesting class of materials for which density functional theory (DFT) modeling has predicted the possibility of intrinsically enhanced ORR kinetics. Ag-Cu, for instance, has already been shown to yield enhanced ORR active sites at certain surface compositions. Studying Ag-bimetallics in a well-controlled and systematic fashion is, therefore, crucial to developing material-property relationships that would aid in the design of optimal catalysts for the ORR and other important electrocatalytic reactions. In addition to catalyst material engineering, it is also important to study the electrolyte effects on electrocatalytic performance to design optimal electrochemical microenvironments. In this dissertation, I employ a wide range of complementary physical and electrochemical methods, in conjunction with DFT, to understand how to engineer high performing electrocatalysts. Specifically, I systematically synthesize, characterize, and test Ag-Pd and Ag-Mn alkaline ORR electrocatalysts, ultimately, establishing the fundamental material-property relationships attributed to the measured intrinsic catalyst performance as a function of composition and structure. The use of physical vapor deposition (PVD) is crucial for the systematic catalyst design and development in my work. Moreover, using PVD as a bridge between fundamental rotating disk electrode (RDE) and applied FC device studies, I systematically fabricate model ionomer-free Ag-Pd gas diffusion electrodes (GDEs) to investigate the performance of this material system in H2-O2 AEMFCs. Varying only the Ag:Pd alloy ratio, I find good agreement between the performance trends measured in the RDE and AEMFC configurations. In terms of electrocatalyst material engineering, in this work I develop Ag-based ORR electrocatalysts with tuned oxygen-adsorbate binding, affording state-of-the-art AEMFC performance. In addition, I also investigate the role of acid electrolyte anions on the ORR performance of Ag and Pd, as well as on the hydrogen and oxygen electrocatalysis performance of Pt. I find that performance varies as a function of electrolyte, that acid electrolyte anions effects are potential dependent, and that nitric acid affords improved electrolyte microenvironments conducive to improved performance compared to certain acids. By fundamentally understanding the interfacial processes responsible for the measured electrochemical performance, herein, I engineer high performing Ag-based ORR electrocatalysts and establish fundamental engineering principles to design optimal catalyst materials and catalyst--electrolyte microenvironments.

Design and Development of Electrocatalysts and Their Microenvironments for Applications in Fuel Cells

Design and Development of Electrocatalysts and Their Microenvironments for Applications in Fuel Cells PDF Author: Jose Andres Zamora Zeledon
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Electrocatalysis plays a crucial role in a wide range of renewable and sustainable energy technologies, which are required to create a carbon-neutral or carbon-negative energy ecosystem, ultimately fostering the long-term prosperity of humankind. The oxygen reduction reaction (ORR) is key in electrochemical energy conversion and storage technologies such as fuel cells and metal-air batteries, which, for instance, have the potential to help decarbonize transportation and provide clean intermittent renewable energy storage. However, cheaper electrocatalyst materials with improved ORR activity, 4e--product selectivity, and stability are needed to deploy these promising technologies at a large scale. Anion exchange membrane fuel cells (AEMFCs) have emerged as a promising complementary alternative to the more mature proton exchange membrane fuel cells (PEMFCs) because the alkaline environment in AEMFCs allows for improved ORR kinetics and wider material stability compared to in the acidic conditions in PEMFCs. Moreover, diversifying ORR catalysts beyond conventional Pt-based materials is crucial for H2 FCs to achieve large scale deployment and thrive as a resilient and robust energy technology. Ag, which is two orders of magnitude cheaper than Pt, has emerged as a promising active, stable, and selective non-precious metal alkaline ORR catalyst. Moreover, Ag-bimetallics are an interesting class of materials for which density functional theory (DFT) modeling has predicted the possibility of intrinsically enhanced ORR kinetics. Ag-Cu, for instance, has already been shown to yield enhanced ORR active sites at certain surface compositions. Studying Ag-bimetallics in a well-controlled and systematic fashion is, therefore, crucial to developing material-property relationships that would aid in the design of optimal catalysts for the ORR and other important electrocatalytic reactions. In addition to catalyst material engineering, it is also important to study the electrolyte effects on electrocatalytic performance to design optimal electrochemical microenvironments. In this dissertation, I employ a wide range of complementary physical and electrochemical methods, in conjunction with DFT, to understand how to engineer high performing electrocatalysts. Specifically, I systematically synthesize, characterize, and test Ag-Pd and Ag-Mn alkaline ORR electrocatalysts, ultimately, establishing the fundamental material-property relationships attributed to the measured intrinsic catalyst performance as a function of composition and structure. The use of physical vapor deposition (PVD) is crucial for the systematic catalyst design and development in my work. Moreover, using PVD as a bridge between fundamental rotating disk electrode (RDE) and applied FC device studies, I systematically fabricate model ionomer-free Ag-Pd gas diffusion electrodes (GDEs) to investigate the performance of this material system in H2-O2 AEMFCs. Varying only the Ag:Pd alloy ratio, I find good agreement between the performance trends measured in the RDE and AEMFC configurations. In terms of electrocatalyst material engineering, in this work I develop Ag-based ORR electrocatalysts with tuned oxygen-adsorbate binding, affording state-of-the-art AEMFC performance. In addition, I also investigate the role of acid electrolyte anions on the ORR performance of Ag and Pd, as well as on the hydrogen and oxygen electrocatalysis performance of Pt. I find that performance varies as a function of electrolyte, that acid electrolyte anions effects are potential dependent, and that nitric acid affords improved electrolyte microenvironments conducive to improved performance compared to certain acids. By fundamentally understanding the interfacial processes responsible for the measured electrochemical performance, herein, I engineer high performing Ag-based ORR electrocatalysts and establish fundamental engineering principles to design optimal catalyst materials and catalyst--electrolyte microenvironments.

Electrocatalysts for Fuel Cells and Hydrogen Evolution

Electrocatalysts for Fuel Cells and Hydrogen Evolution PDF Author: Abhijit Ray
Publisher: BoD – Books on Demand
ISBN: 1789848121
Category : Science
Languages : en
Pages : 130

Get Book Here

Book Description
The book starts with a theoretical understanding of electrocatalysis in the framework of density functional theory followed by a vivid review of oxygen reduction reactions. A special emphasis has been placed on electrocatalysts for a proton-exchange membrane-based fuel cell where graphene with noble metal dispersion plays a significant role in electron transfer at thermodynamically favourable conditions. The latter part of the book deals with two 2D materials with high economic viability and process ability and MoS2 and WS2 for their prospects in water-splitting from renewable energy.

Electrocatalysts for Fuel Cells and Hydrogen Evolution - Theory to Design

Electrocatalysts for Fuel Cells and Hydrogen Evolution - Theory to Design PDF Author: Ranjan K. Pati
Publisher:
ISBN: 9781789848137
Category : Physical and theoretical chemistry
Languages : en
Pages : 128

Get Book Here

Book Description
The book starts with a theoretical understanding of electrocatalysis in the framework of density functional theory followed by a vivid review of oxygen reduction reactions. A special emphasis has been placed on electrocatalysts for a proton-exchange membrane-based fuel cell where graphene with noble metal dispersion plays a significant role in electron transfer at thermodynamically favourable conditions. The latter part of the book deals with two 2D materials with high economic viability and process ability and MoS2 and WS2 for their prospects in water-splitting from renewable energy.

Electrocatalysis in Fuel Cells

Electrocatalysis in Fuel Cells PDF Author: Minhua Shao
Publisher: MDPI
ISBN: 3038422347
Category : Catalysts
Languages : en
Pages : 689

Get Book Here

Book Description
This book is a printed edition of the Special Issue "Electrocatalysis in Fuel Cells" that was published in Catalysts

PEM Fuel Cell Electrocatalysts and Catalyst Layers

PEM Fuel Cell Electrocatalysts and Catalyst Layers PDF Author: Jiujun Zhang
Publisher: Springer Science & Business Media
ISBN: 1848009364
Category : Technology & Engineering
Languages : en
Pages : 1147

Get Book Here

Book Description
Proton exchange membrane (PEM) fuel cells are promising clean energy converting devices with high efficiency and low to zero emissions. Such power sources can be used in transportation, stationary, portable and micro power applications. The key components of these fuel cells are catalysts and catalyst layers. “PEM Fuel Cell Electrocatalysts and Catalyst Layers” provides a comprehensive, in-depth survey of the field, presented by internationally renowned fuel cell scientists. The opening chapters introduce the fundamentals of electrochemical theory and fuel cell catalysis. Later chapters investigate the synthesis, characterization, and activity validation of PEM fuel cell catalysts. Further chapters describe in detail the integration of the electrocatalyst/catalyst layers into the fuel cell, and their performance validation. Researchers and engineers in the fuel cell industry will find this book a valuable resource, as will students of electrochemical engineering and catalyst synthesis.

Metal Oxide-Based Nanostructured Electrocatalysts for Fuel Cells, Electrolyzers, and Metal-Air Batteries

Metal Oxide-Based Nanostructured Electrocatalysts for Fuel Cells, Electrolyzers, and Metal-Air Batteries PDF Author: Teko Napporn
Publisher: Elsevier
ISBN: 0128184973
Category : Technology & Engineering
Languages : en
Pages : 292

Get Book Here

Book Description
Metal Oxide-Based Nanostructured Electrocatalysts for Fuel Cells, Electrolyzers, and Metal-Air Batteries is a comprehensive book summarizing the recent overview of these new materials developed to date. The book is motivated by research that focuses on the reduction of noble metal content in catalysts to reduce the cost associated to the entire system. Metal oxides gained significant interest in heterogeneous catalysis for basic research and industrial deployment. Metal Oxide-Based Nanostructured Electrocatalysts for Fuel Cells, Electrolyzers, and Metal-Air Batteries puts these opportunities and challenges into a broad context, discusses the recent researches and technological advances, and finally provides several pathways and guidelines that could inspire the development of ground-breaking electrochemical devices for energy production or storage. Its primary focus is how materials development is an important approach to produce electricity for key applications such as automotive and industrial. The book is appropriate for those working in academia and R&D in the disciplines of materials science, chemistry, electrochemistry, and engineering. Includes key aspects of materials design to improve the performance of electrode materials for energy conversion and storage device applications Reviews emerging metal oxide materials for hydrogen production, hydrogen oxidation, oxygen reduction and oxygen evolution Discusses metal oxide electrocatalysts for water-splitting, metal-air batteries, electrolyzer, and fuel cell applications

Electrocatalysts for Low Temperature Fuel Cells

Electrocatalysts for Low Temperature Fuel Cells PDF Author: Thandavarayan Maiyalagan
Publisher: John Wiley & Sons
ISBN: 3527803890
Category : Technology & Engineering
Languages : en
Pages : 618

Get Book Here

Book Description
Meeting the need for a text on solutions to conditions which have so far been a drawback for this important and trend-setting technology, this monograph places special emphasis on novel, alternative catalysts of low temperature fuel cells. Comprehensive in its coverage, the text discusses not only the electrochemical, mechanistic, and material scientific background, but also provides extensive chapters on the design and fabrication of electrocatalysts. A valuable resource aimed at multidisciplinary audiences in the fields of academia and industry.

Electrocatalysis for Membrane Fuel Cells

Electrocatalysis for Membrane Fuel Cells PDF Author: Nicolas Alonso-Vante
Publisher: John Wiley & Sons
ISBN: 3527348379
Category : Technology & Engineering
Languages : en
Pages : 581

Get Book Here

Book Description
Electrocatalysis for Membrane Fuel Cells Comprehensive resource covering hydrogen oxidation reaction, oxygen reduction reaction, classes of electrocatalytic materials, and characterization methods Electrocatalysis for Membrane Fuel Cells focuses on all aspects of electrocatalysis for energy applications, covering perspectives as well as the low-temperature fuel systems principles, with main emphasis on hydrogen oxidation reaction (HOR) and the oxygen reduction reaction (ORR). Following an introduction to basic principles of electrochemistry for electrocatalysis with attention to the methods to obtain the parameters crucial to characterize these systems, Electrocatalysis for Membrane Fuel Cells covers sample topics such as: Electrocatalytic materials and electrode configurations, including precious versus non-precious metal centers, stability and the role of supports for catalytic nano-objects; Fundamentals on characterization techniques of materials and the various classes of electrocatalytic materials; Theoretical explanations of materials and systems using both Density Functional Theory (DFT) and molecular modelling; Principles and methods in the analysis of fuel cells systems, fuel cells integration and subsystem design. Electrocatalysis for Membrane Fuel Cells quickly and efficiently introduces the field of electrochemistry, along with synthesis and testing in prototypes of materials, to researchers and professionals interested in renewable energy and electrocatalysis for chemical energy conversion.

Fuel Cell Science

Fuel Cell Science PDF Author: Andrzej Wieckowski
Publisher: John Wiley & Sons
ISBN: 1118063112
Category : Technology & Engineering
Languages : en
Pages : 652

Get Book Here

Book Description
A comprehensive survey of theoretical andexperimental concepts in fuel cell chemistry Fuel cell science is undergoing significant development, thanks, in part, to a spectacular evolution of the electrocatalysis concepts, and both new theoretical and experimental methods. Responding to the need for a definitive guide to the field, Fuel Cell Science provides an up-to-date, comprehensive compendium of both theoretical and experimental aspects of the field. Designed to inspire scientists to think about the future of fuel cell technology, Fuel Cell Science addresses the emerging field of bio-electrocatalysis and the theory of heterogeneous reactions in fuel cell science and proposes potential applications for electrochemical energy production. The book is thorough in its coverage of the electron transfer process and structure of the electric double layer, as well as the development of operando measurements. Among other subjects, chapters describe: Recently developed strategies for the design, preparation, and characterization of catalytic materials for fuel cell electrodes, especially for new fuel cell cathodes A wide spectrum of theoretical and computational methods, with?the aim of?developing?new fuel cell catalysis concepts and improving existing designs to increase their performance.? Edited by two leading faculty, the book: Addresses the emerging fields of bio-electrocatalysis for fuel cells and theory of heterogeneous reactions for use in fuel cell catalysis Provides a survey of experimental and theoretical concepts in these new fields Shows the evolution of electrocatalysis concepts Describes the chemical physics of fuel cell reactions Forecasts future developments in electrochemical energy production and conversion Written for electrochemists and electrochemistry graduate students, electrocatalysis researchers, surface and physical chemists, chemical engineers, automotive engineers, and fuel cell and energy-related researchers, this modern compendium can help today's best minds meet the challenges in fuel science technology.

Atomically Precise Electrocatalysts for Electrochemical Energy Applications

Atomically Precise Electrocatalysts for Electrochemical Energy Applications PDF Author: Anuj Kumar
Publisher: Springer Nature
ISBN: 3031546229
Category :
Languages : en
Pages : 446

Get Book Here

Book Description