Demonstration of a New Electrodialysis Technology to Reduce Energy Required for Salinity Management

Demonstration of a New Electrodialysis Technology to Reduce Energy Required for Salinity Management PDF Author: Rick Bond
Publisher:
ISBN:
Category : Saline water conversion
Languages : en
Pages : 124

Get Book Here

Book Description

Demonstration of a New Electrodialysis Technology to Reduce Energy Required for Salinity Management

Demonstration of a New Electrodialysis Technology to Reduce Energy Required for Salinity Management PDF Author: Rick Bond
Publisher:
ISBN:
Category : Saline water conversion
Languages : en
Pages : 124

Get Book Here

Book Description


Green Membrane Technologies towards Environmental Sustainability

Green Membrane Technologies towards Environmental Sustainability PDF Author: Ludovic Francis Dumee
Publisher: Elsevier
ISBN: 032395166X
Category : Technology & Engineering
Languages : en
Pages : 647

Get Book Here

Book Description
Green Membrane Technology Towards Environmental Sustainability covers experimental and theoretical aspects of greener membranes and processes. The book fills the gap in current literature and offers a platform that introduces and discusses new routes in fabricating green membranes and processes for developing green membranes. Although membranes and membrane processes have decades of history, rapid development in membranes manufacturing and emerging membrane driven markets is requiring new and more sustainable engagement of manufacturers, membrane operators and scientists. This book is written for chemical and polymer engineers, materials scientists, professors, graduate students, as well as general readers at universities, research institutions and R&D departments in industries who are engaged in sustainable engineering and practical strategies in circular economy. - Provides a broad reference base on a wide range of information on greener technologies and new generation membranes - Details experimental and theoretical aspects of the greener membranes and processes - Dedicated exclusively to greener routes for fabricating sustainable membranes in separation and delivery applications

Sustainable Energy from Salinity Gradients

Sustainable Energy from Salinity Gradients PDF Author: Andrea Cipollina
Publisher: Woodhead Publishing
ISBN: 0081003234
Category : Technology & Engineering
Languages : en
Pages : 363

Get Book Here

Book Description
Salinity gradient energy, also known as blue energy and osmotic energy, is the energy obtainable from the difference in salt concentration between two feed solutions, typically sea water and river water. It is a large-scale renewable resource that can be harvested and converted to electricity. Efficient extraction of this energy is not straightforward, however. Sustainable Energy from Salinity Gradients provides a comprehensive review of resources, technologies and applications in this area of fast-growing interest. Key technologies covered include pressure retarded osmosis, reverse electrodialysis and accumulator mixing. Environmental and economic aspects are also considered, together with the possible synergies between desalination and salinity gradient energy technologies. Sustainable Energy from Salinity Gradients is an essential text for R&D professionals in the energy & water industry interested in salinity gradient power and researchers in academia from post-graduate level upwards. For more than ten years the Editors have been sharing substantial research activities in the fields of renewable energy and desalination, successfully participating to a number of European Union research projects and contributing to the relevant scientific literature with more than 100 papers and 2 books on Desalination technologies and their coupling with Renewable Energy. They are intensely working in the field of Salinity Gradient Power, carrying out research with specific focus o.n open-loop and closed-loop reverse electrodialysis and pressure retarded osmosis. - Covers applications of pressure retarded osmosis, reverse electrodialysis, and capacitive mixing for salinity gradient power in one convenient volume - Presents the environmental aspects and economics of salinity gradient energy - Explores possible synergies between desalination and salinity gradient energy

Sustainable Desalination and Water Reuse

Sustainable Desalination and Water Reuse PDF Author: Eric M.V. Hoek
Publisher: Springer Nature
ISBN: 3031795083
Category : Technology & Engineering
Languages : en
Pages : 194

Get Book Here

Book Description
Over the past half century, reverse osmosis (RO) has grown from a nascent niche technology into the most versatile and effective desalination and advanced water treatment technology available. However, there remain certain challenges for improving the cost-effectiveness and sustainability of RO desalination plants in various applications. In low-pressure RO applications, both capital (CAPEX) and operating (OPEX) costs are largely influenced by product water recovery, which is typically limited by mineral scale formation. In seawater applications, recovery tends to be limited by the salinity limits on brine discharge and cost is dominated by energy demand. The combination of water scarcity and sustainability imperatives, in many locations, is driving system designs towards minimal and zero liquid discharge (M/ZLD) for inland brackish water, municipal and industrial wastewaters, and even seawater desalination. Herein, we review the basic principles of RO processes, the state-of-the-art for RO membranes, modules and system designs as well as methods for concentrating and treating brines to achieve MLD/ZLD, resource recovery and renewable energy powered desalination systems. Throughout, we provide examples of installations employing conventional and some novel approaches towards high recovery RO in a range of applications from brackish groundwater desalination to oil and gas produced water treatment and seawater desalination.

Twort's Water Supply

Twort's Water Supply PDF Author: Malcolm J. Brandt
Publisher: Butterworth-Heinemann
ISBN: 008100043X
Category : Technology & Engineering
Languages : en
Pages : 968

Get Book Here

Book Description
Twort's Water Supply, Seventh Edition, has been expanded to provide the latest tools and techniques to meet engineering challenges over dwindling natural resources. Approximately 1.1 billion people in rural and peri-urban communities of developing countries do not have access to safe drinking water. The mortality from diarrhea-related diseases amounts to 2.2 million people each year from the consumption of unsafe water. This update reflects the latest WHO, European, UK, and US standards, including the European Water Framework Directive. The book also includes an expansion of waste and sludge disposal, including energy and sustainability, and new chapters on intakes, chemical storage, handling, and sampling. Written for both professionals and students, this book is essential reading for anyone working in water engineering. - Features expanded coverage of waste and sludge disposal to include energy use and sustainability - Includes a new chapter on intakes - Includes a new chapter on chemical storage and handling

Electrodialysis Technology

Electrodialysis Technology PDF Author: United States. Office of Water Research and Technology
Publisher:
ISBN:
Category : Saline water conversion
Languages : en
Pages : 16

Get Book Here

Book Description


Seawater Desalination

Seawater Desalination PDF Author: Andrea Cipollina
Publisher: Springer Science & Business Media
ISBN: 3642011500
Category : Technology & Engineering
Languages : en
Pages : 306

Get Book Here

Book Description
A growing proportion of the world’s population is dependent on Seawater Desalination as a source of fresh water for both potable and civil use. One of the main drawbacks of conventional desalination technologies is the substantial energy requirement, which is facing cost increases in the global energy market. "Seawater Desalination" presents an overview of conventional and non-conventional technologies, with a particular focus on the coupling of renewable energies with desalination processes. The first section of this book presents, in a technical but reader-friendly way, an overview of currently-used desalination processes, from thermal to membrane processes, highlighting the relevant technical features, advantages and disadvantages, and development potential. It also gives a rapid insight into the economic aspects of fresh water production from seawater. The second section of the book presents novel processes which use Renewable Energies for fresh water production. From the first solar still evaporators, which artificially reproduced the natural cycle of water, technology has progressed to develop complex systems to harness energy from the sun, wind, tides, waves, etc. and then to use this energy to power conventional or novel desalination processes. Most of these processes are still at a preliminary stage of development, but some are already being cited as examples in remote areas, where they are proving to be valuable in solving the problems of water scarcity. A rapid growth in these technologies is foreseen in the coming years. This book provides a unique foundation, within the context of present and future sustainability, for professionals, technicians, managers, and private and public institutions operating in the area of fresh water supply.

Electrochemical Energy Generation from Natural and Synthetic Salinity Gradients Using Reverse Electrodialysis and Capacitive Mixing

Electrochemical Energy Generation from Natural and Synthetic Salinity Gradients Using Reverse Electrodialysis and Capacitive Mixing PDF Author: Marta Hatzell
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Salinity gradient energy (SGE) technologies are emerging systems designed to recover energy from engineered and natural mixing processes. Two electricity producing SGE systems are reverse electrodialysis (RED) and capacitive mixing (CapMix). RED captures mixing energy using a series of ion exchange membranes that drive electrochemical reactions at redox electrodes. CapMix utilizes polarizable electrodes to store charge in the surfaces electric double layer (EDL). Energy generation can then occur when the EDL is expanded and compressed in different concentration solutions.The use of themolytic salt solutions (e.g. ammonium bicarbonate--AmB) within a RED system is promising, as AmB can be regenerated using low-grade waste--heat (e.g. 40-60oC). One disadvantage to using AmB is the potential for gas bubbles (CO2, NH3) to form within the stack. Accumulation of bubbles can impede ion migration, and reduce system performance. The management and minimization of gaseous bubbles in RED flow fields is an important operational issue, and has not previously been addressed within RED literature. Flow field design with and without spacers in a RED stack was analyzed to determine how fluid flow and geometry effected the accumulation and removal of bubbles. In addition, the performance changes, in terms of power and resistance were measured in the presence of bubbles. Gaseous bubble accumulation was minimized using short vertically aligned channels, which resulted in a reduction in the amount of the membrane area which was restricted due to bubbles from ~20% to 7%. The stack power density improved by 12% when all gaseous bubbles were removed from the cell. AmB-RED systems can potentially produce hydrogen or electrical energy through altering the cathodic reaction. With a kinetically favorable cathodic reaction (oxygen reduction reaction), the projected electrical energy generated by a single pass AmB--RED system approached 78 Wh per m--3 (low concentrate). However, when RED was operated with the less kinetically favorable reaction (hydrogen evolution reaction), and hydrogen gas was harvested, the energy recovered increased by as much ~1.5 times to 118 Wh m--3 (low concentrate). Indirect hydrogen production through coupling an RED stack with an external electrolysis system was only projected to achieve 35 Wh m--3 (low concentrate) or a third of that produced through direct hydrogen generation. The flexibility of the RED architecture allows for the potential for simultaneous hydrogen and electricity production, whereas competing technologies such as PRO and CapMix only produce electricity. Several approaches to generate electrical power using CapMix have recently been developed, but power densities have remained low. By immersing the capacitive electrodes in ionic fields generated by exoelectrogenic microorganisms in bioelectrochemical reactors, it was shown that energy capture using synthetic river and seawater could be increased ~65 times, and power generation ~46 times, when compared to controls (no ionic fields). Favorable electrochemical reactions due to microbial oxidation of organic matter, coupled to oxygen reduction at the cathode, created this ionic flow field that enabled more effective passive charging of the capacitive electrodes, and higher energy capture. This ionic-based approach is not limited to the use of river water-seawater solutions. Forced charging of the capacitive electrodes, using energy generated by the bioelectrochemical system and a thermolytic solution, further increased the maximum power density to 7 W m--2 (capacitive electrode). The amount of salinity gradient energy that can be obtained through capacitive--mixing based on double layer expansion (CDLE) also depends on the extent that the materials electric double layer (EDL) expands in a low concentration electrolyte (e.g. river water). I show here that the individual electrode rise potential, which is a measure of the EDL expansion process, significantly (P = 10--5) depends on the concentration of strong acid surface functional groups. Electrodes with a low concentration of strong acid functional groups (0.05 mmol g--1) resulted in a positive--potential--rise of dU+/-- = +59 ± 4 mV (dUcell = 16 ± 0.7 mV) in synthetic river water, whereas activated carbons with high concentrations of strong acid groups (0.36 mmol g--1) produced a negative-potential-rise of dU+/-- = --31 ± 5 mV (dUcell ~--11 ± 1 mV). Dissimilar electrodes, which coupled a negative electrode with a high concentration of strong acid groups with positive electrode with a low concentrations of strong acid groups, produced a whole cell potential rise which was 5.7 times greater than produced with similar electrodes (from 15 ± 0.2 to 89 ± 3 mV). Therefore, tuning the surface chemistry of known materials can be conducted through a variety of methods (oxidation, ammonia treatment, etc.) to more optimally extract energy through CapMix processes.

The Economics of Future Membrane Desalination Processes and Applications

The Economics of Future Membrane Desalination Processes and Applications PDF Author: Ronan Killian McGovern
Publisher:
ISBN:
Category :
Languages : en
Pages : 213

Get Book Here

Book Description
Seawater desalination, the desalination of waters flowing back from hydraulic fracturing processes and brackish water desalination constitute important desalination applications. These have a combined market size in excess of $25 billion per annum and a combined water production rate equivalent to the domestic consumption of over 300 million people. Each application offers its own distinct challenge. Reductions in energy consumption are key to driving down seawater desalination costs. The optimisation of water treatment in tandem with the formulation of fracturing fluids is key to reducing water management costs and environmental impacts in hydraulic fracturing. The development of desalination technologies that allow for high water recovery and high product purity is key to meeting industrial and municipal needs from brackish water sources. This thesis develops and investigates three emerging technologies: forward osmosis, electrodialysis at high salinity and hybrid electrodialysis-reverse osmosis with a view to addressing the three above challenges. Forward osmosis has often been viewed as a technology with the potential to reduce energy consumption in seawater desalination. An analysis is therefore undertaken into the theoretical limits upon its energy requirements paying particular attention to the energy penalty involved in drawing water from the feed stream into a more concentrated solution. Although unaddressed in literature this energy penalty is an important and distinguishing factor between FO and other desalination technologies. In the case of seawater, it is shown to put FO at a disadvantage that makes it difficult to compete with reverse osmosis. Consequently, it is argued that forward osmosis research should be reoriented away from seawater desalination to focus on alternate applications where salinities are above those which reverse osmosis can handle or where draw solution regeneration is not required. For these alternate applications a new framework is provided that explains the influence of the membrane orientation upon water flux through the membrane, an insight that is of particular use in considering the trade-off between water flux and fouling. The conventional view of electrodialysis is that it is most cost effective for the desalination of low salinity waters, and less so for moderate and high salinities, such as those encountered in waters that flow back from hydraulic fracturing processes. A thermoeconomic analysis of the effect of salinity upon cost reveals a different picture whereby electrodialysis is most cost effective removing salt from streams with between 1,000 ppm and 20,000 ppm of total dissolved solids. At lower salinities performance is hampered by low solution conductivity and low salt removal rates. At higher salinities the process is thermodynamically inefficient as the chemical potential of salt is raised only by a small amount when transported into the concentrate stream. The conclusion is that applications requiring salt removal within this 'sweet spot' for electrodialysis, such as the treatment of waste waters from flue-gas desulphurisation and coal-bed methane production, merit accelerated investigation. Incumbent technologies for the recycling of water produced from shales are currently inefficient and expensive. A study of electrodialysis energy requirements and equipment costs indicates that they are similar to, or even lower than, those for distillation. By developing a numerical model of system performance, which was validated over the range of 250 ppm to 192,000 ppm NaCl, it was possible to optimise the electrodialysis stack voltage and bring about cost savings of up to 30% in certain cases. These results and this numerical model warrant and will guide further investigations of electrodialysis under field conditions. Finally, a hybrid electrodialysis-reverse osmosis system was designed and optimised such that the reverse osmosis unit shifts salt removal in the electrodialysis unit into its sweet spot. The combination of these two technologies results in a system that provides enhanced product purity and product recovery at reduced cost. A simple rule of thumb is provided to guide practitioners in their choice between hybrid and standalone systems. This rule allows a choice to be made based on the relative cost of water from electrodialysis and reverse osmosis.

Ion-Exchange Membrane Separation Processes

Ion-Exchange Membrane Separation Processes PDF Author: H Strathmann
Publisher: Elsevier
ISBN: 0080509401
Category : Technology & Engineering
Languages : en
Pages : 361

Get Book Here

Book Description
Today, membranes and membrane processes are used as efficient tools for the separation of liquid mixtures or gases in the chemical and biomedical industry, in water desalination and wastewater purification. Despite the fact that various membrane processes, like reverse osmosis, are described in great detail in a number of books, processes involving ion-exchange membranes are only described in a fragmented way in scientific journals and patents; even though large industrial applications, like electrodialysis, have been around for over half a century. Therefore, this book is emphasizing on the most relevant aspects of ion-exchange membranes. This book provides a comprehensive overview of ion-exchange membrane separation processes covering the fundamentals as well as recent developments of the different products and processes and their applications. The audience for this book is heterogeneous, as it includes plant managers and process engineers as well as research scientists and graduate students. The separate chapters are based on different topics. The first chapter describes the relevant Electromembrane processes in a general overview. The second chapter explains thermodynamic and physicochemical fundamentals. The third chapter gives information about ion-exchange membrane preparation techniques, while the fourth and fifth chapter discusses the processes as unit operations giving examples for the design of specific plants. - First work on the principles and applications of electrodialysis and related separation processes - Presently no other comprehensive work that can serve as both reference work and text book is available - Book is suited for teaching students and as source for detailed information