Author: Utku Kose
Publisher: Springer Nature
ISBN: 9811563217
Category : Technology & Engineering
Languages : en
Pages : 311
Book Description
This book explores various applications of deep learning to the diagnosis of cancer,while also outlining the future face of deep learning-assisted cancer diagnostics. As is commonly known, artificial intelligence has paved the way for countless new solutions in the field of medicine. In this context, deep learning is a recent and remarkable sub-field, which can effectively cope with huge amounts of data and deliver more accurate results. As a vital research area, medical diagnosis is among those in which deep learning-oriented solutions are often employed. Accordingly, the objective of this book is to highlight recent advanced applications of deep learning for diagnosing different types of cancer. The target audience includes scientists, experts, MSc and PhD students, postdocs, and anyone interested in the subjects discussed. The book can be used as a reference work to support courses on artificial intelligence, medical and biomedicaleducation.
Deep Learning for Cancer Diagnosis
Author: Utku Kose
Publisher: Springer Nature
ISBN: 9811563217
Category : Technology & Engineering
Languages : en
Pages : 311
Book Description
This book explores various applications of deep learning to the diagnosis of cancer,while also outlining the future face of deep learning-assisted cancer diagnostics. As is commonly known, artificial intelligence has paved the way for countless new solutions in the field of medicine. In this context, deep learning is a recent and remarkable sub-field, which can effectively cope with huge amounts of data and deliver more accurate results. As a vital research area, medical diagnosis is among those in which deep learning-oriented solutions are often employed. Accordingly, the objective of this book is to highlight recent advanced applications of deep learning for diagnosing different types of cancer. The target audience includes scientists, experts, MSc and PhD students, postdocs, and anyone interested in the subjects discussed. The book can be used as a reference work to support courses on artificial intelligence, medical and biomedicaleducation.
Publisher: Springer Nature
ISBN: 9811563217
Category : Technology & Engineering
Languages : en
Pages : 311
Book Description
This book explores various applications of deep learning to the diagnosis of cancer,while also outlining the future face of deep learning-assisted cancer diagnostics. As is commonly known, artificial intelligence has paved the way for countless new solutions in the field of medicine. In this context, deep learning is a recent and remarkable sub-field, which can effectively cope with huge amounts of data and deliver more accurate results. As a vital research area, medical diagnosis is among those in which deep learning-oriented solutions are often employed. Accordingly, the objective of this book is to highlight recent advanced applications of deep learning for diagnosing different types of cancer. The target audience includes scientists, experts, MSc and PhD students, postdocs, and anyone interested in the subjects discussed. The book can be used as a reference work to support courses on artificial intelligence, medical and biomedicaleducation.
Deep Learning for Cancer Diagnosis
Author: Utku Kose
Publisher: Springer
ISBN: 9789811563232
Category : Technology & Engineering
Languages : en
Pages : 300
Book Description
This book explores various applications of deep learning to the diagnosis of cancer,while also outlining the future face of deep learning-assisted cancer diagnostics. As is commonly known, artificial intelligence has paved the way for countless new solutions in the field of medicine. In this context, deep learning is a recent and remarkable sub-field, which can effectively cope with huge amounts of data and deliver more accurate results. As a vital research area, medical diagnosis is among those in which deep learning-oriented solutions are often employed. Accordingly, the objective of this book is to highlight recent advanced applications of deep learning for diagnosing different types of cancer. The target audience includes scientists, experts, MSc and PhD students, postdocs, and anyone interested in the subjects discussed. The book can be used as a reference work to support courses on artificial intelligence, medical and biomedicaleducation.
Publisher: Springer
ISBN: 9789811563232
Category : Technology & Engineering
Languages : en
Pages : 300
Book Description
This book explores various applications of deep learning to the diagnosis of cancer,while also outlining the future face of deep learning-assisted cancer diagnostics. As is commonly known, artificial intelligence has paved the way for countless new solutions in the field of medicine. In this context, deep learning is a recent and remarkable sub-field, which can effectively cope with huge amounts of data and deliver more accurate results. As a vital research area, medical diagnosis is among those in which deep learning-oriented solutions are often employed. Accordingly, the objective of this book is to highlight recent advanced applications of deep learning for diagnosing different types of cancer. The target audience includes scientists, experts, MSc and PhD students, postdocs, and anyone interested in the subjects discussed. The book can be used as a reference work to support courses on artificial intelligence, medical and biomedicaleducation.
Examining the Impact of Deep Learning and IoT on Multi-Industry Applications
Author: Raut, Roshani
Publisher: IGI Global
ISBN: 1799875172
Category : Computers
Languages : en
Pages : 304
Book Description
Deep learning, as a recent AI technique, has proven itself efficient in solving many real-world problems. Deep learning algorithms are efficient, high performing, and an effective standard for solving these problems. In addition, with IoT, deep learning is in many emerging and developing domains of computer technology. Deep learning algorithms have brought a revolution in computer vision applications by introducing an efficient solution to several image processing-related problems that have long remained unresolved or moderately solved. Various significant IoT technologies in various industries, such as education, health, transportation, and security, combine IoT with deep learning for complex problem solving and the supported interaction between human beings and their surroundings. Examining the Impact of Deep Learning and IoT on Multi-Industry Applications provides insights on how deep learning, together with IoT, impacts various sectors such as healthcare, agriculture, cyber security, and social media analysis applications. The chapters present solutions to various real-world problems using these methods from various researchers’ points of view. While highlighting topics such as medical diagnosis, power consumption, livestock management, security, and social media analysis, this book is ideal for IT specialists, technologists, security analysts, medical practitioners, imaging specialists, diagnosticians, academicians, researchers, industrial experts, scientists, and undergraduate and postgraduate students who are working in the field of computer engineering, electronics, and electrical engineering.
Publisher: IGI Global
ISBN: 1799875172
Category : Computers
Languages : en
Pages : 304
Book Description
Deep learning, as a recent AI technique, has proven itself efficient in solving many real-world problems. Deep learning algorithms are efficient, high performing, and an effective standard for solving these problems. In addition, with IoT, deep learning is in many emerging and developing domains of computer technology. Deep learning algorithms have brought a revolution in computer vision applications by introducing an efficient solution to several image processing-related problems that have long remained unresolved or moderately solved. Various significant IoT technologies in various industries, such as education, health, transportation, and security, combine IoT with deep learning for complex problem solving and the supported interaction between human beings and their surroundings. Examining the Impact of Deep Learning and IoT on Multi-Industry Applications provides insights on how deep learning, together with IoT, impacts various sectors such as healthcare, agriculture, cyber security, and social media analysis applications. The chapters present solutions to various real-world problems using these methods from various researchers’ points of view. While highlighting topics such as medical diagnosis, power consumption, livestock management, security, and social media analysis, this book is ideal for IT specialists, technologists, security analysts, medical practitioners, imaging specialists, diagnosticians, academicians, researchers, industrial experts, scientists, and undergraduate and postgraduate students who are working in the field of computer engineering, electronics, and electrical engineering.
Computational Analysis and Deep Learning for Medical Care
Author: Amit Kumar Tyagi
Publisher: John Wiley & Sons
ISBN: 1119785723
Category : Computers
Languages : en
Pages : 532
Book Description
The book details deep learning models like ANN, RNN, LSTM, in many industrial sectors such as transportation, healthcare, military, agriculture, with valid and effective results, which will help researchers find solutions to their deep learning research problems. We have entered the era of smart world devices, where robots or machines are being used in most applications to solve real-world problems. These smart machines/devices reduce the burden on doctors, which in turn make their lives easier and the lives of their patients better, thereby increasing patient longevity, which is the ultimate goal of computer vision. Therefore, the goal in writing this book is to attempt to provide complete information on reliable deep learning models required for e-healthcare applications. Ways in which deep learning can enhance healthcare images or text data for making useful decisions are discussed. Also presented are reliable deep learning models, such as neural networks, convolutional neural networks, backpropagation, and recurrent neural networks, which are increasingly being used in medical image processing, including for colorization of black and white X-ray images, automatic machine translation images, object classification in photographs/images (CT scans), character or useful generation (ECG), image caption generation, etc. Hence, reliable deep learning methods for the perception or production of better results are a necessity for highly effective e-healthcare applications. Currently, the most difficult data-related problem that needs to be solved concerns the rapid increase of data occurring each day via billions of smart devices. To address the growing amount of data in healthcare applications, challenges such as not having standard tools, efficient algorithms, and a sufficient number of skilled data scientists need to be overcome. Hence, there is growing interest in investigating deep learning models and their use in e-healthcare applications. Audience Researchers in artificial intelligence, big data, computer science, and electronic engineering, as well as industry engineers in transportation, healthcare, biomedicine, military, agriculture.
Publisher: John Wiley & Sons
ISBN: 1119785723
Category : Computers
Languages : en
Pages : 532
Book Description
The book details deep learning models like ANN, RNN, LSTM, in many industrial sectors such as transportation, healthcare, military, agriculture, with valid and effective results, which will help researchers find solutions to their deep learning research problems. We have entered the era of smart world devices, where robots or machines are being used in most applications to solve real-world problems. These smart machines/devices reduce the burden on doctors, which in turn make their lives easier and the lives of their patients better, thereby increasing patient longevity, which is the ultimate goal of computer vision. Therefore, the goal in writing this book is to attempt to provide complete information on reliable deep learning models required for e-healthcare applications. Ways in which deep learning can enhance healthcare images or text data for making useful decisions are discussed. Also presented are reliable deep learning models, such as neural networks, convolutional neural networks, backpropagation, and recurrent neural networks, which are increasingly being used in medical image processing, including for colorization of black and white X-ray images, automatic machine translation images, object classification in photographs/images (CT scans), character or useful generation (ECG), image caption generation, etc. Hence, reliable deep learning methods for the perception or production of better results are a necessity for highly effective e-healthcare applications. Currently, the most difficult data-related problem that needs to be solved concerns the rapid increase of data occurring each day via billions of smart devices. To address the growing amount of data in healthcare applications, challenges such as not having standard tools, efficient algorithms, and a sufficient number of skilled data scientists need to be overcome. Hence, there is growing interest in investigating deep learning models and their use in e-healthcare applications. Audience Researchers in artificial intelligence, big data, computer science, and electronic engineering, as well as industry engineers in transportation, healthcare, biomedicine, military, agriculture.
Machine Learning with Health Care Perspective
Author: Vishal Jain
Publisher: Springer Nature
ISBN: 3030408507
Category : Technology & Engineering
Languages : en
Pages : 418
Book Description
This unique book introduces a variety of techniques designed to represent, enhance and empower multi-disciplinary and multi-institutional machine learning research in healthcare informatics. Providing a unique compendium of current and emerging machine learning paradigms for healthcare informatics, it reflects the diversity, complexity, and the depth and breadth of this multi-disciplinary area. Further, it describes techniques for applying machine learning within organizations and explains how to evaluate the efficacy, suitability, and efficiency of such applications. Featuring illustrative case studies, including how chronic disease is being redefined through patient-led data learning, the book offers a guided tour of machine learning algorithms, architecture design, and applications of learning in healthcare challenges.
Publisher: Springer Nature
ISBN: 3030408507
Category : Technology & Engineering
Languages : en
Pages : 418
Book Description
This unique book introduces a variety of techniques designed to represent, enhance and empower multi-disciplinary and multi-institutional machine learning research in healthcare informatics. Providing a unique compendium of current and emerging machine learning paradigms for healthcare informatics, it reflects the diversity, complexity, and the depth and breadth of this multi-disciplinary area. Further, it describes techniques for applying machine learning within organizations and explains how to evaluate the efficacy, suitability, and efficiency of such applications. Featuring illustrative case studies, including how chronic disease is being redefined through patient-led data learning, the book offers a guided tour of machine learning algorithms, architecture design, and applications of learning in healthcare challenges.
Data Analytics in Bioinformatics
Author: Rabinarayan Satpathy
Publisher: John Wiley & Sons
ISBN: 111978560X
Category : Computers
Languages : en
Pages : 439
Book Description
Machine learning techniques are increasingly being used to address problems in computational biology and bioinformatics. Novel machine learning computational techniques to analyze high throughput data in the form of sequences, gene and protein expressions, pathways, and images are becoming vital for understanding diseases and future drug discovery. Machine learning techniques such as Markov models, support vector machines, neural networks, and graphical models have been successful in analyzing life science data because of their capabilities in handling randomness and uncertainty of data noise and in generalization. Machine Learning in Bioinformatics compiles recent approaches in machine learning methods and their applications in addressing contemporary problems in bioinformatics approximating classification and prediction of disease, feature selection, dimensionality reduction, gene selection and classification of microarray data and many more.
Publisher: John Wiley & Sons
ISBN: 111978560X
Category : Computers
Languages : en
Pages : 439
Book Description
Machine learning techniques are increasingly being used to address problems in computational biology and bioinformatics. Novel machine learning computational techniques to analyze high throughput data in the form of sequences, gene and protein expressions, pathways, and images are becoming vital for understanding diseases and future drug discovery. Machine learning techniques such as Markov models, support vector machines, neural networks, and graphical models have been successful in analyzing life science data because of their capabilities in handling randomness and uncertainty of data noise and in generalization. Machine Learning in Bioinformatics compiles recent approaches in machine learning methods and their applications in addressing contemporary problems in bioinformatics approximating classification and prediction of disease, feature selection, dimensionality reduction, gene selection and classification of microarray data and many more.
Computational Intelligence in Cancer Diagnosis
Author: Janmenjoy Nayak
Publisher: Academic Press
ISBN: 0323903533
Category : Science
Languages : en
Pages : 422
Book Description
Computational Intelligence in Cancer Diagnosis: Progress and Challenges provides insights into the current strength and weaknesses of different applications and research findings on computational intelligence in cancer research. The book improves the exchange of ideas and coherence among various computational intelligence methods and enhances the relevance and exploitation of application areas for both experienced and novice end-users. Topics discussed include neural networks, fuzzy logic, connectionist systems, genetic algorithms, evolutionary computation, cellular automata, self-organizing systems, soft computing, fuzzy systems, and hybrid intelligent systems. The book's chapters are written by international experts from both cancer research, oncology and computational sides to cover different aspects and make it comprehensible for readers with no background on informatics. - Contains updated information about advanced computational intelligence, spanning the areas of neural networks, fuzzy logic, connectionist systems, genetic algorithms, evolutionary computation, cellular automata, self-organizing systems, soft computing, fuzzy systems, and hybrid intelligent systems in diagnosing cancer diseases - Discusses several cancer types, including their detection, treatment and prevention - Presents case studies that illustrate the applications of intelligent computing in data analysis to help readers to analyze and advance their research in cancer
Publisher: Academic Press
ISBN: 0323903533
Category : Science
Languages : en
Pages : 422
Book Description
Computational Intelligence in Cancer Diagnosis: Progress and Challenges provides insights into the current strength and weaknesses of different applications and research findings on computational intelligence in cancer research. The book improves the exchange of ideas and coherence among various computational intelligence methods and enhances the relevance and exploitation of application areas for both experienced and novice end-users. Topics discussed include neural networks, fuzzy logic, connectionist systems, genetic algorithms, evolutionary computation, cellular automata, self-organizing systems, soft computing, fuzzy systems, and hybrid intelligent systems. The book's chapters are written by international experts from both cancer research, oncology and computational sides to cover different aspects and make it comprehensible for readers with no background on informatics. - Contains updated information about advanced computational intelligence, spanning the areas of neural networks, fuzzy logic, connectionist systems, genetic algorithms, evolutionary computation, cellular automata, self-organizing systems, soft computing, fuzzy systems, and hybrid intelligent systems in diagnosing cancer diseases - Discusses several cancer types, including their detection, treatment and prevention - Presents case studies that illustrate the applications of intelligent computing in data analysis to help readers to analyze and advance their research in cancer
Applications of Deep Learning and Big IoT on Personalized Healthcare Services
Author: Wason, Ritika
Publisher: IGI Global
ISBN: 1799821021
Category : Medical
Languages : en
Pages : 248
Book Description
Healthcare is an industry that has seen great advancements in personalized services through big data analytics. Despite the application of smart devices in the medical field, the mass volume of data that is being generated makes it challenging to correctly diagnose patients. This has led to the implementation of precise algorithms that can manage large amounts of information and successfully use smart living in medical environments. Professionals worldwide need relevant research on how to successfully implement these smart technologies within their own personalized healthcare processes. Applications of Deep Learning and Big IoT on Personalized Healthcare Services is a pivotal reference source that provides a collection of innovative research on the analytical methods and applications of smart algorithms for the personalized treatment of patients. While highlighting topics including cognitive computing, natural language processing, and supply chain optimization, this book is ideally designed for network designers, analysts, technology specialists, medical professionals, developers, researchers, academicians, and post-graduate students seeking relevant information on smart developments within individualized healthcare.
Publisher: IGI Global
ISBN: 1799821021
Category : Medical
Languages : en
Pages : 248
Book Description
Healthcare is an industry that has seen great advancements in personalized services through big data analytics. Despite the application of smart devices in the medical field, the mass volume of data that is being generated makes it challenging to correctly diagnose patients. This has led to the implementation of precise algorithms that can manage large amounts of information and successfully use smart living in medical environments. Professionals worldwide need relevant research on how to successfully implement these smart technologies within their own personalized healthcare processes. Applications of Deep Learning and Big IoT on Personalized Healthcare Services is a pivotal reference source that provides a collection of innovative research on the analytical methods and applications of smart algorithms for the personalized treatment of patients. While highlighting topics including cognitive computing, natural language processing, and supply chain optimization, this book is ideally designed for network designers, analysts, technology specialists, medical professionals, developers, researchers, academicians, and post-graduate students seeking relevant information on smart developments within individualized healthcare.
Methods of Microarray Data Analysis
Author: Simon M. Lin
Publisher: Springer Science & Business Media
ISBN: 9780792375647
Category : Mathematics
Languages : en
Pages : 212
Book Description
Papers from CAMDA 2000, December 18-19, 2000, Duke University, Durham, NC, USA
Publisher: Springer Science & Business Media
ISBN: 9780792375647
Category : Mathematics
Languages : en
Pages : 212
Book Description
Papers from CAMDA 2000, December 18-19, 2000, Duke University, Durham, NC, USA
Artificial Neural Networks in Cancer Diagnosis, Prognosis, and Patient Management
Author: R. N. G. Naguib
Publisher: CRC Press
ISBN: 1420036386
Category : Medical
Languages : en
Pages : 216
Book Description
The potential value of artificial neural networks (ANN) as a predictor of malignancy has begun to receive increased recognition. Research and case studies can be found scattered throughout a multitude of journals. Artificial Neural Networks in Cancer Diagnosis, Prognosis, and Patient Management brings together the work of top researchers - primaril
Publisher: CRC Press
ISBN: 1420036386
Category : Medical
Languages : en
Pages : 216
Book Description
The potential value of artificial neural networks (ANN) as a predictor of malignancy has begun to receive increased recognition. Research and case studies can be found scattered throughout a multitude of journals. Artificial Neural Networks in Cancer Diagnosis, Prognosis, and Patient Management brings together the work of top researchers - primaril