Current Profile Modeling to Extend the Duration of High Performance Advanced Tokamak Modes in DIII-D.

Current Profile Modeling to Extend the Duration of High Performance Advanced Tokamak Modes in DIII-D. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 5

Get Book Here

Book Description
In DIII-D, as in a number of tokamaks, high performance is obtained with various optimized magnetic shear configurations that exhibit internal transport barriers. Negative central shear (NCS) discharges are created transiently during the current ramp-up by auxiliary heating and current drive from neutral beam injection. Both q{sub min} and the radius at which it occurs, [rho]{sub qmin}, decrease with time as the Ohmic current diffuses inward. The q-profiles calculated using EFIT with external magnetic and Motional Stark Effect (MSE) measurements as constraints are comparable to those calculated with the Corsica code, a time-dependent, 2D equilibrium and 1D transport modeling code. Corsica is used to predict the temporal evolution of the current density from a combination of measured profiles, transport models and neoclassical resistivity. Using these predictive capabilities, the authors are exploring methods for increasing the duration and [rho]{sub qmin} of the NCS configuration by local control of the current density profile with simulations of the possible control available from the electron cyclotron heating and current drive system currently being upgraded on DIII-D. Their intention is not to do a detailed investigation of transport models but rather to provide a reasonable model of heat conductivity to be able to simulate effects of electron cyclotron heating (ECH) and current drive (ECCD) on confinement in NCS configurations. The authors adjust free parameters (c, c1 and c2) in the model to obtain a reasonable representation of the temporal evolution of electron and ion temperature profiles consistent with those measured in selected DIII-D shots. In all cases, they use the measured density profiles rather than self-consistently solve for particle sources and particle transport at this time.

Current Profile Modeling to Extend the Duration of High Performance Advanced Tokamak Modes in DIII-D.

Current Profile Modeling to Extend the Duration of High Performance Advanced Tokamak Modes in DIII-D. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 5

Get Book Here

Book Description
In DIII-D, as in a number of tokamaks, high performance is obtained with various optimized magnetic shear configurations that exhibit internal transport barriers. Negative central shear (NCS) discharges are created transiently during the current ramp-up by auxiliary heating and current drive from neutral beam injection. Both q{sub min} and the radius at which it occurs, [rho]{sub qmin}, decrease with time as the Ohmic current diffuses inward. The q-profiles calculated using EFIT with external magnetic and Motional Stark Effect (MSE) measurements as constraints are comparable to those calculated with the Corsica code, a time-dependent, 2D equilibrium and 1D transport modeling code. Corsica is used to predict the temporal evolution of the current density from a combination of measured profiles, transport models and neoclassical resistivity. Using these predictive capabilities, the authors are exploring methods for increasing the duration and [rho]{sub qmin} of the NCS configuration by local control of the current density profile with simulations of the possible control available from the electron cyclotron heating and current drive system currently being upgraded on DIII-D. Their intention is not to do a detailed investigation of transport models but rather to provide a reasonable model of heat conductivity to be able to simulate effects of electron cyclotron heating (ECH) and current drive (ECCD) on confinement in NCS configurations. The authors adjust free parameters (c, c1 and c2) in the model to obtain a reasonable representation of the temporal evolution of electron and ion temperature profiles consistent with those measured in selected DIII-D shots. In all cases, they use the measured density profiles rather than self-consistently solve for particle sources and particle transport at this time.

Non-Inductive Current Drive Modeling Extending Advanced Tokamak Operation to Steady State

Non-Inductive Current Drive Modeling Extending Advanced Tokamak Operation to Steady State PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
A critical issue for sustaining high performance, negative central shear (NCS) discharges is the ability to maintain current distributions that are maximum off axis. Sustaining such hollow current profiles in steady state requires the use of non-inductively driven current sources. On the DIII-D experiment, a combination of neutral beam current drive (NBCD) and bootstrap current have been used to create transient NCS discharges. The electron cyclotron heating (ECH) and current drive (ECCD) system is currently being upgraded from three gyrotrons to six to provide more than 3MW of absorbed power in long-pulse operation to help sustain the required off-axis current drive. This upgrade SuPporrs the long range goal of DIII-D to sustain high performance discharges with high values of normalized [beta], [beta]{sub n} = [beta]/(I{sub p}/aB{sub T}), confinement enhancement factor, H, and neutron production rates while utilizing bootstrap current fraction, f{sub bs}, in excess of 50%. At these high performance levels, the likelihood of onset of MHD modes that spoil confinement indicates the need to control plasma profiles if we are to extend this operation to long pulse or steady state. To investigate the effectiveness of the EC system and to explore operating scenarios to sustain these discharges, we use time-dependent simulations of the equilibrium, transport and stability. We explore methods to directly alter the safety factor profile, q, through direct current drive or by localized electron heating to modify the bootstrap current profile. Time dependent simulations using both experimentally determined [1] and theory-based [2] energy transport models have been done. Here, we report on simulations exploring parametric dependencies of the heating, current drive, and profiles that affect our ability to sustain stable discharges.

ADVANCED TOKAMAK PROFILE EVOLUTION IN DIII-D.

ADVANCED TOKAMAK PROFILE EVOLUTION IN DIII-D. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Using off-axis electron cyclotron current drive (ECCD), self-consistent integrated advanced tokamak operation has been demonstrated on DIII-D, combining high[beta] (>3%) at high q(q[sub min]> 2.0) with good energy confinement (H[sub 89][approx] 2.5) and high noninductive current fraction (f[sub BS][approx] 55%, f[sub NI][approx] 90%). Modification of the current profile by ECCD led to internal transport barrier formation even in the presence of type I edge localized modes. Improvements were observed in all transport channels, and increased peaking of profiles led to higher bootstrap current in the core. Separate experiments have shown the ability to maintain a nearly steady-state current profile for up to 1 s with q[sub min]> 1.5. Modeling indicates that this favorable current profile can be maintained indefinitely at a higher[beta][sub N] using tools available to the near-term DIII-D program. Modeling and simulation have become essential tools for the experimental program in interpreting the data and developing detail plans for new experiments.

Advanced Tokamak Research on the DIII-D Tokamak

Advanced Tokamak Research on the DIII-D Tokamak PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The objective of the planned research in advanced tokamak development on DIII-D at General Atomics, San Diego, USA. is to establish improved tokamak operation through significant improvements in the stability factor, confinement quality, and bootstrap current fraction using localized radio frequency (rf) current profile control, rf and neutral beam heating for pressure profile control, as well as control of plasma rotation and optimization of the plasma boundary conditions. Recent research results in H-mode confinement, modifications of current profiles to achieve higher confinement and higher [beta], a new regime of improved confinement (VH-mode), and rf noninductive current drive are encouraging. In this talk, arguments will be presented supporting the need for improved performance in tokamak reactors. Experimentally observed advanced performance regimes on DIII-D will be discussed. Confinement improvement up to H = 4, where H is the ratio of energy confinement time to the ITER89-P scaling H[triple-bond] [Tau][sub E]/[Tau][sub E-ITER89-P], has been achieved. In other discharges [beta][sub N] = [beta]/(I/aB), [%-m[center-dot][Tau]/MA] [approx-gt] 6 has been obtained. These values have so far been achieved transiently and independently. Techniques, will be described which can extend the high performance to quasi-steady-state and sustain the high H and [beta][sub N] values simultaneously. Two high performance regimes, one in first stable regime and the other in second stable regime, have been simulated br self-consistently evolving a magnetohydrodynamic (MHD) equilibrium-transport code. Finally, experimental program plans and outstanding important physics issues will be discussed.

Simulation of Enhanced Tokamak Performance on DIII-D Using Fast Wave Current Drive

Simulation of Enhanced Tokamak Performance on DIII-D Using Fast Wave Current Drive PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 4

Get Book Here

Book Description
The fast magnetosonic wave is now recognized to be a leading candidate for noninductive for the tokamak reactor due to the ability of the wave to penetrate to the hot dense core region. Fast wave current drive (FWCD) experiments on D3D have realized up to 120 kA of rf current drive, with up to 40% of the plasma current driven noninductively. The success of these experiments at 60 MHZ with a 2 MW transmitter source capability has led to a major upgrade of the FWCD system. Two additional transmitters, 30 to 120 NM, with a 2 MW source capability each, will be added together with two new four-strap antennas in early 1994. Another major thrust of the D3-D program is to develop advanced tokamak modes of operation, simultaneously demonstrating improvements in confinement and stability in quasi-steady-state operation. In some of the initial advanced tokamak experiments on D3-D with neutral beam heated (NBI) discharges it has been demonstrated that energy confinement nine can be improved by rapidly elongating the plasma to force the current density profile to be more centrally peaked. However, this high-l[sub i] phase of the discharge with the commensurate improvement in confinement is transient as the current density profile relaxes. By applying FWCD to the core of such a [kappa]-ramped discharge it may be possible to sustain the high internal inductance and elevated confinement. Using computational tools validated on the initial DM-D FWCD experiments we find that such a high-l[sub i] advanced tokamak discharge should be capable of sustainment at the 1 MA level with the upgraded capability of the FWCD system.

Overview of Recent Experimental Results from the DIII-D Advanced Tokamak Program

Overview of Recent Experimental Results from the DIII-D Advanced Tokamak Program PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 39

Get Book Here

Book Description
OAK A271 OVERVIEW OF RECENT EXPERIMENTAL RESULTS FROM THE DIII-D ADVANCED TOKAMAK PROGRAM. The DIII-D research program is developing the scientific basis for advanced tokamak (AT) modes of operation in order to enhance the attractiveness of the tokamak as an energy producing system. Since the last International Atomic Energy Agency (IAEA) meeting, they have made significant progress in developing the building blocks needed for AT operation: (1) they have doubled the magnetohydrodynamic (MHD) stable tokamak operating space through rotational stabilization of the resistive wall mode; (2) using this rotational stabilization, they have achieved [beta]{sub N}H9 e"10 for 4 [tau]{sub E} limited by the neoclassical tearing mode; (3) using real-time feedback of the electron cyclotron current drive (ECCD) location, they have stabilized the (m, n) = (3,2) neoclassical tearing mode and then increased [beta]{sub T} by 60%; (4) they have produced ECCD stabilization of the (2,1) neoclassical tearing mode in initial experiments; (5) they have made the first integrated AT demonstration discharges with current profile control using ECCD; (6) ECCD and electron cyclotron heating (ECH) have been used to control the pressure profile in high performance plasmas; and (7) they have demonstrated stationary tokamak operation for 6.5 s (36 [tau]{sub E}) at the same fusion gain parameter of [beta]{sub N}H9/q952 H"0.4 as ITER but at much higher q95 = 4.2. The authors have developed general improvements applicable to conventional and advanced tokamak operating modes: (1) they have an existence proof of a mode of tokamak operation, quiescent H-mode, which has no pulsed, ELM heat load to the divertor and which can run for long periods of time (3.8 s or 25 [tau]{sub E}) with constant density and constant radiated power; (2) they have demonstrated real-time disruption detection and mitigation for vertical disruption events using high pressure gas jet injection of noble gases; (3) they have found that the heat and particle fluxes to the inner strike points of balanced, double-null divertors are much smaller than to the outer strike points. They have made detailed investigations of the edge pedestal and SOL: (1) Atomic physics and plasma physics both play significant roles in setting the width of the edge density barrier in H-mode; (2) ELM heat flux conducted to the divertor decreases as density increases; (3) Intermittent, bursty transport contributes to cross field particle transport in the scrape-off layer (SOL) of H-mode and, especially, L-mode plasmas.

Optimized Profiles for Improved Confinement and Stability in the DIII-D Tokamak

Optimized Profiles for Improved Confinement and Stability in the DIII-D Tokamak PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 11

Get Book Here

Book Description
Simultaneous achievement of high energy confinement, [tau]{sub E}, and high plasma beta, [beta], leads to an economically attractive compact tokamak fusion reactor. High confinement enhancement, H = [tau]{sub E}/[tau]{sub E-ITER89P} = 4, and high normalized beta [beta]{sub N} = [beta]/(I/aB) = 6%-m-T/MA, have been obtained in DIII-D experimental discharges. These improved confinement and/or improved stability limits are observed in several DIII-D high performance operational regimes: VH-mode, high l{sub i} H-mode, second stable core, and high beta poloidal. The authors have identified several important features of the improved performance in these discharges: details of the plasma shape, toroidal rotation or ExB flow profile, q profile and current density profile, and pressure profile. From the improved physics understanding of these enhanced performance regimes, they have developed operational scenarios which maintain the essential features of the improved confinement and which increase the stability limits using localized current profile control. The stability limit is increased by modifying the interior safety factor profile to be nonmonotonic with high central q, while maintaining the edge current density consistent with the improved transport regimes and the high edge bootstrap current. They have calculated high beta equilibria with [beta]{sub N} = 6.5, stable to ideal n = 1 kinks and stable to ideal ballooning modes. The safety factor at the 95% flux surface is 6, the central q value is 3.9 and the minimum in q is 2.6. The current density profile is maintained by the natural profile of the bootstrap current, and a modest amount of electron cyclotron current drive.

LONG-PULSE, HIGH-PERFORMANCE DISCHARGES IN THE DIII-D TOKAMAK.

LONG-PULSE, HIGH-PERFORMANCE DISCHARGES IN THE DIII-D TOKAMAK. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Significant progress in obtaining high performance discharges for many energy confinement times in the DIII-D tokamak has been realized since the previous IAEA meeting. In relation to previous discharges, normalized performance[approx]10 has been sustained for>5[tau][sub E] with q[sub min]>1.5. (The normalized performance is measured by the product[beta][sub N] H[sub 89] indicating the proximity to the conventional[beta] limits and energy confinement quality, respectively.) These H-mode discharges have an ELMing edge and[beta][approx][le] 5%. The limit to increasing[beta] is a resistive wall mode, rather than the tearing modes previously observed. Confinement remains good despite the increase in q. The global parameters were chosen to optimize the potential for fully non-inductive current sustainment at high performance, which is a key program goal for the DIII-D facility in the next two years. Measurement of the current density and loop voltage profiles indicate[approx]75% of the current in the present discharges is sustained non-inductively. The remaining ohmic current is localized near the half radius. The electron cyclotron heating system is being upgraded to replace this remaining current with ECCD. Density and[beta] control, which are essential for operating advanced tokamak discharges, were demonstrated in ELMing H-mode discharges with[beta][sub N]H[sub 89][approx] 7 for up to 6.3 s or[approx] 34[tau][sub E]. These discharges appear to be in resistive equilibrium with q[sub min][approx] 1.05, in agreement with the current profile relaxation time of 1.8 s.

Scientific and Technical Aerospace Reports

Scientific and Technical Aerospace Reports PDF Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 542

Get Book Here

Book Description


Milestone Report

Milestone Report PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 18

Get Book Here

Book Description
During the past year, LLNL efforts in the DIII-D experimental program have expanded to include time-dependent modeling of advanced tokamak (AT) operating modes. Consistent with our involvement in experimental operations, we have directed our initial efforts at modeling the negative central shear (NCS) configuration, an important and attractive mode of operation for reducing the size and cost of future tokamak experiments without sacrificing performance. In this endeavor, we have brought into use the Corsica modeling code as a tool for investigating the time-dependent evolution and control of various operating modes. In our current efforts, we are contributing to the analysis of the NCS experimental data using analysis tools such as the EFIT equilibrium code and the ONETWO and TRANSP transport codes. Results of these analyses are being used for comparisons with the Corsica modeling. Future directions include the modeling of startup and sustaining of NCS (and other AT) configurations, the understanding of current drive effects, the development of current drive scenarios and control algorithms, and the design of experiments and prediction of experimental results. We are currently in the early stages of applying this powerful modeling tool to the DIII-D experimental program.