Crims Island Restoration and Monitoring of Juvenile Salmon Rearing Habitat in the Columbia River Estuary, Oregon, 2004-10

Crims Island Restoration and Monitoring of Juvenile Salmon Rearing Habitat in the Columbia River Estuary, Oregon, 2004-10 PDF Author: U.S. Department of the Interior
Publisher:
ISBN: 9781502525871
Category : Reference
Languages : en
Pages : 58

Get Book Here

Book Description
Under the 2004 Biological Opinion for operation of the Federal Columbia River Power System released by the National Marine Fisheries Service, the U.S. Army Corps of Engineers (USACE), the Bonneville Power Administration (BPA), and the Bureau of Reclamation (Reclamation) were directed to restore more than 4,047 hectares (10,000 acres) of tidal marsh in the Columbia River estuary by 2010. Restoration of Crims Island near Longview, Washington, restored 38.1 hectares of marsh and swamp in the tidal freshwater portion of the lower Columbia River.

Crims Island Restoration and Monitoring of Juvenile Salmon Rearing Habitat in the Columbia River Estuary, Oregon, 2004-10

Crims Island Restoration and Monitoring of Juvenile Salmon Rearing Habitat in the Columbia River Estuary, Oregon, 2004-10 PDF Author: U.S. Department of the Interior
Publisher:
ISBN: 9781502525871
Category : Reference
Languages : en
Pages : 58

Get Book Here

Book Description
Under the 2004 Biological Opinion for operation of the Federal Columbia River Power System released by the National Marine Fisheries Service, the U.S. Army Corps of Engineers (USACE), the Bonneville Power Administration (BPA), and the Bureau of Reclamation (Reclamation) were directed to restore more than 4,047 hectares (10,000 acres) of tidal marsh in the Columbia River estuary by 2010. Restoration of Crims Island near Longview, Washington, restored 38.1 hectares of marsh and swamp in the tidal freshwater portion of the lower Columbia River.

Crims Island

Crims Island PDF Author: Craig A. Haskell
Publisher:
ISBN:
Category : Fish habitat improvement
Languages : en
Pages : 50

Get Book Here

Book Description
Under the 2004 Biological Opinion for operation of the Federal Columbia River Power System released by the National Marine Fisheries Service, the U.S. Army Corps of Engineers (USACE), the Bonneville Power Administration (BPA), and the Bureau of Reclamation (Reclamation) were directed to restore more than 4,047 hectares (10,000 acres) of tidal marsh in the Columbia River estuary by 2010. Restoration of Crims Island near Longview, Washington, restored 38.1 hectares of marsh and swamp in the tidal freshwater portion of the lower Columbia River. The goal of the restoration was to improve habitat for juveniles of Endangered Species Act (ESA)-listed salmon stocks and ESA-listed Columbian white-tailed deer. The U.S. Geological Survey (USGS) monitored and evaluated the fisheries and aquatic resources at Crims Island in 2004 prior to restoration (pre-restoration), which began in August 2004, and then post-restoration from 2006 to 2009. This report summarizes pre- and post-restoration monitoring data used by the USGS to evaluate project success. We evaluated project success by examining the interaction between juvenile salmon and a suite of broader ecological measures including sediments, plants, and invertebrates and their response to large-scale habitat alteration. The restoration action at Crims Island from August 2004 to September 2005 was to excavate a 0.6-meter layer of soil and dig channels in the interior of the island to remove reed canary grass and increase habitat area and tidal exchange. The excavation created 34.4 hectares of tidal emergent marsh where none previously existed and 3.7 hectares of intertidal and subtidal channels. Cattle that had grazed the island for more than 50 years were relocated. Soil excavated from the site was deposited in upland areas next to the tidal marsh to establish an upland forest. Excavation deepened and widened an existing T-shaped channel to increase tidal flow to the interior of the island. The western arm of the existing 'T-channel' was extended westward and connected to Bradbury Slough to create a second outlet to the main river. New intertidal channels were constructed from the existing 'T-channel' and tidal mudflats became inundated at high tide to increase rearing habitat for juvenile salmonids. The restoration action resulted in a 95-percent increase in available juvenile salmon rearing habitat. We collected juvenile salmon and other fishes at Crims Island and a nearby reference site using beach seines and fyke nets annually from March through August during all years. Benthic invertebrates were collected with sediment corers and drift invertebrates were collected with neuston nets. Juvenile salmon stomach contents were sampled using lavage. Vegetation and sediments characteristics were surveyed and we conducted a topographic/bathymetric survey using a RTK (real time kinematic) GPS (global positioning system). The fish assemblage at Crims Island, composed primarily of threespine stickleback (Gasterosteus aculeatus), non-native banded killifish (Fundulus diaphanus), peamouth chub (Mylocheilus caurinus), subyearling Chinook salmon (Oncorhynchus tshawytscha) (hereinafter referred to as subyearlings), and small numbers of juvenile chum salmon (Oncorhynchus keta), did not differ appreciably pre- and post-restoration. Subyearlings were the primary salmonid collected and were seasonally abundant from April through May during all years. The abundance of juvenile salmon declined seasonally as water temperature exceeded 20 °C in the Reference site by mid-June; however, subyearlings persisted at the Mainstem site and in subtidal channels of the Restoration site through the summer in water temperatures exceeding 22 °C. Residence times of subyearlings in Crims Island backwaters generally were short consisting of one or two tidal cycles. Median residence time was longer in the Restoration site than in the Reference site pre- and post-restoration. Small (mean = 55.7 millimeters) subyearlings primarily consumed dipteran adults and larvae in backwater habitats, while large (mean = 60.0 millimeters) subyearlings consumed Daphnia and Corophium in nearshore mainstem habitats. At all sites, chironomid larvae, Corophium, and oligochaetes were dominant in the benthic invertebrate community, whereas chironomid adults and aphids were dominant in the drift invertebrate community. Based on feeding indexes, subyearlings fed more intensively in the Reference site than in the Restoration and Mainstem sites prior to restoration. However, post-restoration, subyearlings fed more intensively in the Restoration site than in the Reference site and their diet was more similar to that of fish found in the Reference site. Although invertebrate density at the Restoration site did not change significantly post-restoration, invertebrate diversity initially decreased before returning to pre-restoration levels. However, the overall abundance of chironomids actually increased in the Restoration site post-restoration. Although juvenile salmon can feed preferentially, our results indicated that subyearlings fed most intensively on chironomids in backwater habitats and insect diversity, although important to overall ecosystem function, did not appear to limit their abundance. Although we were unable to estimate salmon abundance pre-restoration, a 95-percent increase in available habitat coupled with the large numbers of subyearlings with high condition factors collected post-restoration indicate that the project was largely a success in creating suitable rearing habitat for subyearlings. Catch data indicated that more subyearlings per hour were accessing restored habitat compared to unrestored habitat. We estimated total subyearling numbers ranging from 11,000 to 13,000 in the Restoration site post-restoration. Our before-after-control-impact paired series (BACIPS) study design permitted data analysis using t-tests to evaluate response to restoration and indicated that restored habitat contained larger subyearlings than unrestored habitat. Future monitoring efforts could benefit from sampling additional reference sites and evaluating higher-order metrics, such as survival or growth, to gauge restoration success. Further creation of shallow water rearing habitat will likely benefit subyearlings compared to other juvenile salmon life histories because subyearlings tend to migrate seaward using productive shallow backwaters instead of mainstem habitats more so than yearling Chinook salmon and large subyearlings. Much research in the lower Columbia River is directed toward the survival of large subyearlings using mainstem habitats. Estimating survival and growth of small subyearlings using restored habitats can help in planning and implementing off-channel restoration projects in the future.

Historic Habitat Opportunities and Food-Web Linkages of Juvenile Salmon in the Columbia River Estuary, Annual Report of Research

Historic Habitat Opportunities and Food-Web Linkages of Juvenile Salmon in the Columbia River Estuary, Annual Report of Research PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 19

Get Book Here

Book Description
In 2002 with support from the U.S. Army Corps of Engineers (USACE), an interagency research team began investigating salmon life histories and habitat use in the lower Columbia River estuary to fill significant data gaps about the estuary's potential role in salmon decline and recovery . The Bonneville Power Administration (BPA) provided additional funding in 2004 to reconstruct historical changes in estuarine habitat opportunities and food web linkages of Columbia River salmon (Onchorhynchus spp.). Together these studies constitute the estuary's first comprehensive investigation of shallow-water habitats, including selected emergent, forested, and scrub-shrub wetlands. Among other findings, this research documented the importance of wetlands as nursery areas for juvenile salmon; quantified historical changes in the amounts and distributions of diverse habitat types in the lower estuary; documented estuarine residence times, ranging from weeks to months for many juvenile Chinook salmon (O. tshawytscha); and provided new evidence that contemporary salmonid food webs are supported disproportionately by wetland-derived prey resources. The results of these lower-estuary investigations also raised many new questions about habitat functions, historical habitat distributions, and salmon life histories in other areas of the Columbia River estuary that have not been adequately investigated. For example, quantitative estimates of historical habitat changes are available only for the lower 75 km of the estuary, although tidal influence extends 217 km upriver to Bonneville Dam. Because the otolith techniques used to reconstruct salmon life histories rely on detection of a chemical signature (strontium) for salt water, the estuarine residency information we have collected to date applies only to the lower 30 or 35 km of the estuary, where fish first encounter ocean water. We lack information about salmon habitat use, life histories, and growth within the long tidal-fresh reaches of the main-stem river and many tidally-influenced estuary tributaries. Finally, our surveys to date characterize wetland habitats within island complexes distributed in the main channel of the lower estuary. Yet some of the most significant wetland losses have occurred along the estuary's periphery, including shoreline areas and tributary junctions. These habitats may or may not function similarly as the island complexes that we have surveyed to date. In 2007 we initiated a second phase of the BPA estuary study (Phase II) to address specific uncertainties about salmon in tidal-fresh and tributary habitats of the Columbia River estuary. This report summarizes 2007 and 2008 Phase II results and addresses three principal research questions: (1) What was the historic distribution of estuarine and floodplain habitats from Astoria to Bonneville Dam? (2) Do individual patterns of estuarine residency and growth of juvenile Chinook salmon vary among wetland habitat types along the estuarine tidal gradient? (3) Are salmon rearing opportunities and life histories in the restoring wetland landscape of lower Grays River similar to those documented for island complexes of the main-stem estuary? Phase II extended our analysis of historical habitat distribution in the estuary above Rkm 75 to near Bonneville Dam. For this analysis we digitized the original nineteenth-century topographic (T-sheets) and hydrographic (H-sheets) survey maps for the entire estuary. Although all T-sheets (Rkm 0 to Rkm 206) were converted to GIS in 2005 with support for the USACE estuary project, final reconstruction of historical habitats throughout the estuary requires completion of the remaining H-sheet GIS maps above Rkm 75 and their integration with the T-sheets. This report summarizes progress to date on compiling the upper estuary H-sheets above Rkm 75. For the USACE estuary project, we analyzed otoliths from Chinook salmon collected near the estuary mouth in 2003-05 to estimate variability in estuary residence times among juvenile out migrants. In Phase II we expanded these analyses to compare growth and residency among individuals collected in tidal-fresh water wetlands of the lower main-stem estuary. Although no known otolith structural or chemical indicators currently exist to define entry into tidal fresh environments, our previous analyses indicate that otolith barium concentrations frequently increase before individuals encounter salt water. Here we evaluate whether otolith barium levels may provide a valid indicator of tidal fresh water entry by Columbia River Chinook salmon. We also examine otolith growth increments to quantify and compare recent (i.e., the previous 30 d) growth rates among individuals sampled in different wetland habitats along the estuarine tidal gradient.

Wetland Habitats of North America

Wetland Habitats of North America PDF Author: Darold P. Batzer
Publisher: Univ of California Press
ISBN: 0520271645
Category : Nature
Languages : en
Pages : 404

Get Book Here

Book Description
“Wetland Habitats of North America is essential reading for everyone who studies, manages, or visits North American wetlands. It fills an important void in the wetland literature, providing accessible and succinct descriptions of all of the continent’s major wetland types.” Arnold van der Valk, Iowa State University “Batzer and Baldwin have compiled the most comprehensive compendium of North American wetland habitats and their ecology that is presently available—a must for wetland scientists and managers.” Irving A. Mendelssohn, Louisiana State University "If you want to gain a broad understanding of the ecology of North America’s diverse wetlands, Wetland Habitats of North America is the book for you. Darold Batzer and Andrew Baldwin have assembled an impressive group of regional wetland scientists who have produced a virtual encyclopedia to the continent’s wetlands. Reading the book is like a road trip across the Americas with guided tours of major wetland types by local experts. Your first stop will be to coastal wetlands with eight chapters covering tidal wetlands along the Atlantic, Gulf, and Pacific coasts. Then you’ll travel inland where you can visit any or all of 18 types ranging from bottomland swamps of the Southeast to pothole marshes of the Northern Prairies to montane wetlands of the Rockies to tropical swamps of Central America and desert springs wetlands. All in one book—I’m impressed! Every wetlander should add this book to her or his swampland library. Ralph Tiner, University of Massachusetts–Amherst

Historic Habitat Opportunities and Food-Web Linkages of Juvenile Salmon in the Columbia River Estuary and Their Implications for Managing River Flows and Restoring Estuarine Habitat, Physical Sciences Component, Progress Report

Historic Habitat Opportunities and Food-Web Linkages of Juvenile Salmon in the Columbia River Estuary and Their Implications for Managing River Flows and Restoring Estuarine Habitat, Physical Sciences Component, Progress Report PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 43

Get Book Here

Book Description
Long-term changes and fluctuations in river flow, water properties, tides, and sediment transport in the Columbia River and its estuary have had a profound effect on Columbia River salmonids and their habitat. Understanding the river-flow, temperature, tidal, and sediment-supply regimes of the Lower Columbia River (LCR) and how they interact with habitat is, therefore, critical to development of system management and restoration strategies. It is also useful to separate management and climate impacts on hydrologic properties and habitat. This contract, part of a larger project led by the National Oceanic and Atmospheric Administration (NOAA), consists of three work elements, one with five tasks. The first work element relates to reconstruction of historic conditions in a broad sense. The second and third elements consist, respectively, of participation in project-wide integration efforts, and reporting. This report focuses on the five tasks within the historic reconstruction work element. It in part satisfies the reporting requirement, and it forms the basis for our participation in the project integration effort. The first task consists of several topics related to historic changes in river stage and tide. Within this task, the chart datum levels of 14 historic bathymetric surveys completed before definition of Columbia River Datum (CRD) were related to CRD, to enable analysis of these surveys by other project scientists. We have also modeled tidal datums and properties (lower low water or LLW, higher high water or HHW, mean water level or MWL, and greater diurnal tidal range or GDTR) as a function of river flow and tidal range at Astoria. These calculations have been carried for 10 year intervals (1940-date) for 21 stations, though most stations have data for only a few time intervals. Longer-term analyses involve the records at Astoria (1925-date) and Vancouver (1902-date). Water levels for any given river flow have decreased substantially (0.3-1.8 m, depending on river flow and tidal range), and tidal ranges have increased considerably (by a factor of 1.5 to 4 for most river-flow levels) since the 1900-1940 period at most stations, with the largest percentage changes occurring at upriver stations. These changes have been caused by a combination of changes in channel roughness, shape and alignment, changes in coastal tides, and (possibly) bed degradation. Tides are growing throughout the Northeast Pacific, and Astoria (Tongue Pt) has one of the most rapid rates of increase in tidal range in the entire Eastern Pacific, about 0.3m per century. More than half of this change appears to result from changes within the system, the rest from larger scale changes in coastal tides. Regression models of HHW have been used to estimate daily shallow water habitat (SWHA) available in a (almost equal to)25 mile long reach of the system from Eagle Cliff to Kalama for 1925-2004 under four different scenarios (the four possible combinations of diked/undiked and observed flow/ virgin flow). More than 70% of the habitat in this reach has been lost (modern conditions vs. virgin flow with not dikes). In contrast, however, to the reach between Skamokawa and Beaver, selective dike removal (instead of a combination of dike removal and flow restoration) would suffice to increase spring SWHA. The second task consists of reconstruction of the hydrologic cycle before 1878, based on historic documents and inversion of tidal data collected before the onset of the historic flow record in 1878. We have a complete list of freshet times and peak flows for 1858-1877, and scattered freshet information for 1841-1857. Based on tidal data, we have reconstructed the annual flow cycles for 1870 and 1871; other time periods between 1854 and 1867 are under analysis. The three remaining tasks relate to post-1878 hydrologic conditions (flows, sediment supply and water temperature), and separation of the human and climate influences thereon. Estimated ob-served (sometimes routed), adjusted (corrected for reservoir manipulation) and virgin (corrected also for irrigation diversion) flows for 1878-2004 have been compiled for the Columbia River at The Dalles and Beaver, and for the Willamette River at Portland. Sediment transports for the ob-served, adjusted and virgin flows have been calculated for 1878-2004 for the Columbia River at Vancouver and Beaver, for the Willamette River at Portland, and for other west-side tributaries seaward of Vancouver. For Vancouver and Portland, it has been possible to estimate sand trans-port (including gravel), fine sediment transport and total load. Only total load can be estimated at Beaver, and only fine sediment transport can be determined for the west-side tributaries, except for the post-1980 period influenced by the 1980 eruption of Mt St. Helens. Changes in flows and sediment transport due to flow regulation, irrigation diversion, and climate have been estimated.

Restoring the Columbia River Estuary

Restoring the Columbia River Estuary PDF Author: Rachael Klopfenstein
Publisher:
ISBN:
Category : Chinook salmon
Languages : en
Pages : 126

Get Book Here

Book Description
As highlighted in this study, shallow-water habitats and the prey they provide are important for juvenile salmon in the Columbia River estuary, but the spread of invasive species and large-scale changes to the estuary influence how these habitats are utilized. Reed canarygrass (Phalaris arundinacea) (“PHAR” hereafter) is a highly invasive aquatic plant species that affects a number of emergent wetland habitats in the upper Columbia River estuary, and is of concern to those trying to restore important shallow-water habitats for juvenile salmon. The presence of PHAR undoubtedly reduces plant diversity, but this study seeked to elucidate how PHAR affects juvenile Chinook Salmon rearing success relative to natural emergent vegetation. The study further evaluated the importance of wetland-deriver prey to juveniles found in shallow-water habitats along a habitat gradient (i.e., back-water channel, confluence, and main stem). We conducted research at a floodplain wetland restoration site in the tidal-fluvial portion of the estuary, where a water control structure is used to manage water levels and the spread of PHAR. The goal of the research was to compare two microhabitats within the floodplain: areas dominated by PHAR and areas dominated by natural emergent vegetation. Using hatchery-raised juvenile Chinook salmon, we designed a series of feeding experiments in artificial enclosures to determine whether invasive PHAR and natural emergent vegetation provide similar foraging and growth opportunities for juvenile salmon. We further identified differences in physical and biological parameters of each habitat (e.g., temperature, dissolved oxygen, and invertebrate community) and examined feeding characteristics (e.g., diet composition and modeled growth rates) for juveniles through a stomach content analysis. Additionally, we conducted beach seining and diet analysis for fish collected along a habitat gradient and compared the diet composition and modeled growth rates between the sample areas. In the floodplain wetland, invertebrate prey compositions from the 2015-2016 (March- June) fallout and emergence traps were similar, but prey abundances and diversity varied seasonally. Across both years, for emergence traps, the average total density (per m2) of invertebrates in the natural vegetation and in PHAR was 154±18 m2 and 225±34 m2, respectively, and for the fallout traps was 664±95 m2 and 662±64 m2, respectively. Salmon diets were mostly similar, and a large proportion of diets in both habitats were made up of Copepoda/Cladocera (60-98% composition by biomass). Growth during the net pen experiment differed significantly between the two vegetation types (Kruskal-Wallis: p

Habitat Use by Juvenile Salmon in the Columbia River Estuary

Habitat Use by Juvenile Salmon in the Columbia River Estuary PDF Author: Anna N. Kagley
Publisher:
ISBN:
Category : Estuarine ecology
Languages : en
Pages : 37

Get Book Here

Book Description


An Evidence-Based Evaluation of the Cumulative Effects of Tidal Freshwater and Estuarine Ecosystem Restoration on Endangered Juvenile Salmon in the Columbia River

An Evidence-Based Evaluation of the Cumulative Effects of Tidal Freshwater and Estuarine Ecosystem Restoration on Endangered Juvenile Salmon in the Columbia River PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The listing of 13 salmon and steelhead stocks in the Columbia River basin (hereafter collectively referred to as?salmon?) under the Endangered Species Act of 1973, as amended, has stimulated tidal wetland restoration in the lower 235 kilometers of the Columbia River and estuary for juvenile salmon habitat functions. The purpose of the research reported herein was to evaluate the effect on listed salmon of the restoration effort currently being conducted under the auspices of the federal Columbia Estuary Ecosystem Restoration Program (CEERP). Linking changes in the quality and landscape pattern of tidal wetlands in the lower Columbia River and estuary (LCRE) to salmon recovery is a complex problem because of the characteristics of the ecosystem, the salmon, the restoration actions, and available sampling technologies. Therefore, we designed an evidence-based approach to develop, synthesize, and evaluate information to determine early-stage (1̃0 years) outcomes of the CEERP. We developed an ecosystem conceptual model and from that, a primary hypothesis that habitat restoration activities in the LCRE have a cumulative beneficial effect on juvenile salmon. There are two necessary conditions of the hypothesis: - habitat-based indicators of ecosystem controlling factors, processes, and structures show positive effects from restoration actions, and - fish-based indicators of ecosystem processes and functions show positive effects from restoration actions and habitats undergoing restoration. Our evidence-based approach to evaluate the primary hypothesis incorporated seven lines of evidence, most of which are drawn from the LCRE. The lines of evidence are spatial and temporal synergies, cumulative net ecosystem improvement, estuary-wide meta-analysis, offsite benefits to juvenile salmon, landscape condition evaluation, and evidence-based scoring of global literature. The general methods we used to develop information for the lines of evidence included field measurements, data analyses, modeling, meta-analysis, and reanalysis of previously collected data sets. We identified a set of 12 ancillary hypotheses regarding habitat and salmon response. Each ancillary hypothesis states that the response metric will trend toward conditions at relatively undisturbed reference sites. We synthesized the evidence for and against the two necessary conditions by using eleven causal criteria: strength, consistency, specificity, temporality, biological gradient, plausibility, coherence, experiment, analogy, complete exposure pathway, and predictive performance. Our final evaluation included cumulative effects assessment because restoration is occurring at multiple sites and the collective effect is important to salmon recovery. We concluded that all five lines of evidence from the LCRE indicated positive habitat-based and fish-based responses to the restoration performed under the CEERP, although tide gate replacements on small sloughs were an exception. Our analyses suggested that hydrologic reconnections restore access for fish to move into a site to find prey produced there. Reconnections also restore the potential for the flux of prey from the site to the main stem river, where our data show that they are consumed by salmon. We infer that LCRE ecosystem restoration supports increased juvenile salmon growth and enhanced fitness (condition), thereby potentially improving survival rates during the early ocean stage.

An Ecosystem-Based Approach to Habitat Restoration Projects with Emphasis on Salmonids in the Columbia River Estuary, 2003 Technical Report

An Ecosystem-Based Approach to Habitat Restoration Projects with Emphasis on Salmonids in the Columbia River Estuary, 2003 Technical Report PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 167

Get Book Here

Book Description
Habitat restoration in the Columbia River estuary (CRE) is an important off-site mitigation action in the 2000 Biological Opinion (BiOp), an operation of the Federal Columbia River Power System. The CRE, defined as the tidally influenced stretch of river from the mouth to Bonneville Dam 146 miles upstream, is part of the migration pathway for anadromous fish in the Columbia Basin, including salmon listed under the Endangered Species Act (ESA). Salmon in various stages of life, from fry to adults, use tidal channels and wetlands in the CRE to feed, find refuge from predators, and transition physiologically from freshwater to saltwater. Over the last 100 years, however, the area of some wetland habitats has decreased by as much as 70% because of dike and levee building, flow regulation, and other activities. In response to the decline in available habitat, the BiOp's Reasonable and Prudent Alternative (RPA) included mandates to 'develop a plan addressing the habitat needs of juvenile salmon and steelhead in the estuary' (RPA Action 159) and 'develop and implement an estuary restoration program with a goal of protecting and enhancing 10,000 acres of tidal wetlands and other key habitats' (RPA Action 160). To meet Action 159 and support Action 160, this document develops a science-based approach designed to improve ecosystem functions through habitat restoration activities in the CRE. The CRE habitat restoration program's goal and principles focus on habitat restoration projects in an ecosystem context. Since restoration of an entire ecosystem is not generally practical, individual habitat restoration projects have the greatest likelihood of success when they are implemented with an ecosystem perspective. The program's goal is: Implementation of well-coordinated, scientifically sound projects designed to enhance, protect, conserve, restore, and create 10,000 acres of tidal wetlands and other key habitats to aid rebuilding of ESA-listed salmon populations and native species using the CRE. The program's underlying principles are: (1) projects are founded on the best available ecological restoration science, implemented in an ecosystem context, and developed with the intent to restore relevant ecological processes; (2) projects incorporate adaptive management practices with testable hypotheses to track ecological responses to a given restoration effort; and (3) projects are implemented in a coordinated, open process and scientific results from monitoring and evaluation are communicated widely and readily accessible. With this goal and these principles in mind, we developed an approach for CRE habitat restoration. The intent of this document is to provide a scientific basis and implementation guidelines for a habitat restoration program designed to improve ecosystem functions and enhance juvenile salmonid survival in the CRE. The stepwise approach to CRE habitat restoration outlined is somewhat general and broad because the available scientific information is incomplete, e.g., juvenile salmon usage of various CRE wetland habitats. As new data become available, a more specific, detailed plan than was possible here can be produced as an outgrowth of this document. In conclusion, this document provides a scientific basis and implementation guidelines for a habitat restoration program designed to improve ecosystem functions and enhance juvenile salmonid survival in the CRE. As more experience is gained with CRE habitat restoration and scientific uncertainties are resolved, this document should be used as a basis for a detailed habitat restoration plan that specifically addresses (1) which habitat types offer the greatest ecological benefit to salmon, (2) the location of potential sites that if restored would likely provide these habitat types, and (3) how and when the restoration work should be done. This document supports the use of adaptive management so that all elements of salmonid habitat restoration actions in the CRE are under continual evaluation and revision at both the project and program levels. Lessons learned from current and proposed habitat restoration projects need to be applied to all future work, such as the Estuary Partnership's habitat restoration program and the U.S. Army Corps of Engineers General Investigation Study for the CRE, to ensure the most effective use of resources and the best possible long term environment for salmonid growth and survival in the CRE.

From the Edge

From the Edge PDF Author:
Publisher:
ISBN:
Category : Fishery conservation
Languages : en
Pages : 72

Get Book Here

Book Description