Coupling a Supercritical Carbon Dioxide Brayton Cycle to a Helium-Cooled Reactor

Coupling a Supercritical Carbon Dioxide Brayton Cycle to a Helium-Cooled Reactor PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 34

Get Book Here

Book Description
This report outlines the thermodynamics of a supercritical carbon dioxide (sCO2) recompression closed Brayton cycle (RCBC) coupled to a Helium-cooled nuclear reactor. The baseline reactor design for the study is the AREVA High Temperature Gas-Cooled Reactor (HTGR). Using the AREVA HTGR nominal operating parameters, an initial thermodynamic study was performed using Sandia's deterministic RCBC analysis program. Utilizing the output of the RCBC thermodynamic analysis, preliminary values of reactor power and of Helium flow rate through the reactor were calculated in Sandia's HelCO2 code. Some research regarding materials requirements was then conducted to determine aspects of corrosion related to both Helium and to sCO2, as well as some mechanical considerations for pressures and temperatures that will be seen by the piping and other components. This analysis resulted in a list of materials-related research items that need to be conducted in the future. A short assessment of dry heat rejection advantages of sCO2> Brayton cycles was also included. This assessment lists some items that should be investigated in the future to better understand how sCO2 Brayton cycles and nuclear can maximally contribute to optimizing the water efficiency of carbon free power generation.

Coupling a Supercritical Carbon Dioxide Brayton Cycle to a Helium-Cooled Reactor

Coupling a Supercritical Carbon Dioxide Brayton Cycle to a Helium-Cooled Reactor PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 34

Get Book Here

Book Description
This report outlines the thermodynamics of a supercritical carbon dioxide (sCO2) recompression closed Brayton cycle (RCBC) coupled to a Helium-cooled nuclear reactor. The baseline reactor design for the study is the AREVA High Temperature Gas-Cooled Reactor (HTGR). Using the AREVA HTGR nominal operating parameters, an initial thermodynamic study was performed using Sandia's deterministic RCBC analysis program. Utilizing the output of the RCBC thermodynamic analysis, preliminary values of reactor power and of Helium flow rate through the reactor were calculated in Sandia's HelCO2 code. Some research regarding materials requirements was then conducted to determine aspects of corrosion related to both Helium and to sCO2, as well as some mechanical considerations for pressures and temperatures that will be seen by the piping and other components. This analysis resulted in a list of materials-related research items that need to be conducted in the future. A short assessment of dry heat rejection advantages of sCO2> Brayton cycles was also included. This assessment lists some items that should be investigated in the future to better understand how sCO2 Brayton cycles and nuclear can maximally contribute to optimizing the water efficiency of carbon free power generation.

Extension of the Supercritical Carbon Dioxide Brayton Cycle to Low Reactor Power Operation

Extension of the Supercritical Carbon Dioxide Brayton Cycle to Low Reactor Power Operation PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Significant progress has been made on the development of a control strategy for the supercritical carbon dioxide (S-CO2) Brayton cycle enabling removal of power from an autonomous load following Sodium-Cooled Fast Reactor (SFR) down to decay heat levels such that the S-CO2 cycle can be used to cool the reactor until decay heat can be removed by the normal shutdown heat removal system or a passive decay heat removal system such as Direct Reactor Auxiliary Cooling System (DRACS) loops with DRACS in-vessel heat exchangers. This capability of the new control strategy eliminates the need for use of a separate shutdown heat removal system which might also use supercritical CO2. It has been found that this capability can be achieved by introducing a new control mechanism involving shaft speed control for the common shaft joining the turbine and two compressors following reduction of the load demand from the electrical grid to zero. Following disconnection of the generator from the electrical grid, heat is removed from the intermediate sodium circuit through the sodium-to-CO2 heat exchanger, the turbine solely drives the two compressors, and heat is rejected from the cycle through the CO2-to-water cooler. To investigate the effectiveness of shaft speed control, calculations are carried out using the coupled Plant Dynamics Code-SAS4A/SASSYS-1 code for a linear load reduction transient for a 1000 MWt metallic-fueled SFR with autonomous load following. No deliberate motion of control rods or adjustment of sodium pump speeds is assumed to take place. It is assumed that the S-CO2 turbomachinery shaft speed linearly decreases from 100 to 20% nominal following reduction of grid load to zero. The reactor power is calculated to autonomously decrease down to 3% nominal providing a lengthy window in time for the switchover to the normal shutdown heat removal system or for a passive decay heat removal system to become effective. However, the calculations reveal that the compressor conditions are calculated to approach surge such that the need for a surge control system for each compressor is identified. Thus, it is demonstrated that the S-CO2 cycle can operate in the initial decay heat removal mode even with autonomous reactor control. Because external power is not needed to drive the compressors, the results show that the S-CO2 cycle can be used for initial decay heat removal for a lengthy interval in time in the absence of any off-site electrical power. The turbine provides sufficient power to drive the compressors. Combined with autonomous reactor control, this represents a significant safety advantage of the S-CO2 cycle by maintaining removal of the reactor power until the core decay heat falls to levels well below those for which the passive decay heat removal system is designed. The new control strategy is an alternative to a split-shaft layout involving separate power and compressor turbines which had previously been identified as a promising approach enabling heat removal from a SFR at low power levels. The current results indicate that the split-shaft configuration does not provide any significant benefits for the S-CO2 cycle over the current single-shaft layout with shaft speed control. It has been demonstrated that when connected to the grid the single-shaft cycle can effectively follow the load over the entire range. No compressor speed variation is needed while power is delivered to the grid. When the system is disconnected from the grid, the shaft speed can be changed as effectively as it would be with the split-shaft arrangement. In the split-shaft configuration, zero generator power means disconnection of the power turbine, such that the resulting system will be almost identical to the single-shaft arrangement. Without this advantage of the split-shaft configuration, the economic benefits of the single-shaft arrangement, provided by just one turbine and lower losses at the design point, are more important to the overall cycle performance. Therefore, the single-shaft configuration shall be retained as the reference arrangement for S-CO2 cycle power converter preconceptual designs. Improvements to the ANL Plant Dynamics Code have been carried out. The major code improvement is the introduction of a restart capability which simplifies investigation of control strategies for very long transients. Another code modification is transfer of the entire code to a new Intel Fortran complier; the execution of the code using the new compiler was verified by demonstrating that the same results are obtained as when the previous Compaq Visual Fortran compiler was used.

A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors

A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors PDF Author: Vaclav Dostal
Publisher:
ISBN:
Category :
Languages : en
Pages : 317

Get Book Here

Book Description
A systematic, detailed major component and system design evaluation and multiple parameter optimization under practical constraints has been performed of the family of supercritical CO2 Brayton power cycles for application to advanced nuclear reactors. The recompression cycle is shown to excel with respect to simplicity, compactness, cost and thermal efficiency. The main advantage of the supercritical CO2 cycle is comparable efficiency with the helium Brayton cycle at significantly lower temperature (550°C vs. 850 0C), but higher pressure (20 MPa vs. 8 MPa). The supercritical CO2 cycle is well suited to any type of nuclear reactor with core outlet temperature above [approx.] 500 0C in either direct or indirect versions. By taking advantage of the abrupt property changes near the critical point of CO2 the compression work can be reduced, which results in a significant efficiency improvement. However, a real gas cycle requires much more careful optimization than an ideal gas Brayton cycle. Previous investigations by earlier authors were systematized and refined in the present work to survey several different CO2 cycle layouts. Inter- cooling, re-heating, re-compressing and pre-compressing were considered. The recompression cycle was found to yield the highest efficiency, while still retaining simplicity. Inter-cooling is not attractive for this type of cycle as it offers a very modest efficiency improvement. Re-heating has a better potential, but it is applicable only to indirect cycles. Economic analysis of the benefit of re-heating for the indirect cycle showed that using more than one stage of re-heat is economically unattractive.

Development of a Plant Dynamics Computer Code for Analysis of a Supercritical Carbon Dioxide Brayton Cycle Energy Converter Coupled to a Natural Circulation Lead-cooled Fast Reactor

Development of a Plant Dynamics Computer Code for Analysis of a Supercritical Carbon Dioxide Brayton Cycle Energy Converter Coupled to a Natural Circulation Lead-cooled Fast Reactor PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
STAR-LM is a lead-cooled pool-type fast reactor concept operating under natural circulation of the coolant. The reactor core power is 400 MWt. The open-lattice core consists of fuel pins attached to the core support plate, (the does not consist of removable fuel assemblies). The coolant flows outside of the fuel pins. The fuel is transuranic nitride, fabricated from reprocessed LWR spent fuel. The cladding material is HT-9 stainless steel; the steady-state peak cladding temperature is 650 C. The coolant is single-phase liquid lead under atmospheric pressure; the core inlet and outlet temperatures are 438 C and 578 C, respectively. (The Pb coolant freezing and boiling temperatures are 327 C and 1749 C, respectively). The coolant is contained inside of a reactor vessel. The vessel material is Type 316 stainless steel. The reactor is autonomous meaning that the reactor power is self-regulated based on inherent reactivity feedbacks and no external power control (through control rods) is utilized. The shutdown (scram) control rods are used for startup and shutdown and to stop the fission reaction in case of an emergency. The heat from the reactor is transferred to the S-CO2 Brayton cycle in in-reactor heat exchangers (IRHX) located inside the reactor vessel. The IRHXs are shell-and-tube type heat exchangers with lead flowing downwards on the shell side and CO2 flowing upwards on the tube side. No intermediate circuit is utilized. The guard vessel surrounds the reactor vessel to contain the coolant, in the very unlikely event of reactor vessel failure. The Reactor Vessel Auxiliary Cooling System (RVACS) implementing the natural circulation of air flowing upwards over the guard vessel is used to cool the reactor, in the case of loss of normal heat removal through the IRHXs. The RVACS is always in operation. The gap between the vessels is filled with liquid lead-bismuth eutectic (LBE) to enhance the heat removal by air by significantly reducing the thermal resistance of a gas-filled gap.

Development of the ANL Plant Dynamics Code and Control Strategies for the Supercritical Carbon Dioxide Brayton Cycle and Code Validation with Data from the Sandia Small-scale Supercritical Carbon Dioxide Brayton Cycle Test Loop

Development of the ANL Plant Dynamics Code and Control Strategies for the Supercritical Carbon Dioxide Brayton Cycle and Code Validation with Data from the Sandia Small-scale Supercritical Carbon Dioxide Brayton Cycle Test Loop PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Significant progress has been made in the ongoing development of the Argonne National Laboratory (ANL) Plant Dynamics Code (PDC), the ongoing investigation and development of control strategies, and the analysis of system transient behavior for supercritical carbon dioxide (S-CO2) Brayton cycles. Several code modifications have been introduced during FY2011 to extend the range of applicability of the PDC and to improve its calculational stability and speed. A new and innovative approach was developed to couple the Plant Dynamics Code for S-CO2 cycle calculations with SAS4A/SASSYS-1 Liquid Metal Reactor Code System calculations for the transient system level behavior on the reactor side of a Sodium-Cooled Fast Reactor (SFR) or Lead-Cooled Fast Reactor (LFR). The new code system allows use of the full capabilities of both codes such that whole-plant transients can now be simulated without additional user interaction. Several other code modifications, including the introduction of compressor surge control, a new approach for determining the solution time step for efficient computational speed, an updated treatment of S-CO2 cycle flow mergers and splits, a modified enthalpy equation to improve the treatment of negative flow, and a revised solution of the reactor heat exchanger (RHX) equations coupling the S-CO2 cycle to the reactor, were introduced to the PDC in FY2011. All of these modifications have improved the code computational stability and computational speed, while not significantly affecting the results of transient calculations. The improved PDC was used to continue the investigation of S-CO2 cycle control and transient behavior. The coupled PDC-SAS4A/SASSYS-1 code capability was used to study the dynamic characteristics of a S-CO2 cycle coupled to a SFR plant. Cycle control was investigated in terms of the ability of the cycle to respond to a linear reduction in the electrical grid demand from 100% to 0% at a rate of 5%/minute. It was determined that utilization of turbine throttling control below 50% load improves the cycle efficiency significantly. Consequently, the cycle control strategy has been updated to include turbine throttle valve control. The new control strategy still relies on inventory control in the 50%-90% load range and turbine bypass for fine and fast generator output adjustments, but it now also includes turbine throttling control in the 0%-50% load range. In an attempt to investigate the feasibility of using the S-CO2 cycle for normal decay heat removal from the reactor, the cycle control study was extended beyond the investigation of normal load following. It was shown that such operation is possible with the extension of the inventory and the turbine throttling controls. However, the cycle operation in this range is calculated to be so inefficient that energy would need to be supplied from the electrical grid assuming that the generator could be capable of being operated in a motoring mode with an input electrical energy from the grid having a magnitude of about 20% of the nominal plant output electrical power level in order to maintain circulation of the CO2 in the cycle. The work on investigation of cycle operation at low power level will be continued in the future. In addition to the cycle control study, the coupled PDC-SAS4A/SASSYS-1 code system was also used to simulate thermal transients in the sodium-to-CO2 heat exchanger. Several possible conditions with the potential to introduce significant changes to the heat exchanger temperatures were identified and simulated. The conditions range from reactor scram and primary sodium pump failure or intermediate sodium pump failure on the reactor side to pipe breaks and valve malfunctions on the S-CO2 side. It was found that the maximum possible rate of the heat exchanger wall temperature change for the particular heat exchanger design assumed is limited to ±7 C/s for less than 10 seconds. Modeling in the Plant Dynamics Code has been compared with available data from the Sandia National Laboratories (SNL) small-scale S-CO2 Brayton cycle demonstration that is being assembled in a phased approach currently at Barber-Nichols Inc. and at SNL in the future. The available data was obtained with an earlier configuration of the S-CO2 loop involving only a single-turbo-alternator-compressor (TAC) instead of two TACs, a single low temperature recuperator (LTR) instead of both a LTR and a high temperature recuperator (HTR), and fewer than the later to be installed full set of electric heaters. Due to the absence of the full heating capability as well as the lack of a high temperature recuperator providing additional recuperation, the temperature conditions obtained with the loop are too low for the loop conditions to be prototypical of the S-CO2 cycle.

Handbook of Generation IV Nuclear Reactors

Handbook of Generation IV Nuclear Reactors PDF Author: Igor Pioro
Publisher: Woodhead Publishing
ISBN: 0128226536
Category : Technology & Engineering
Languages : en
Pages : 1112

Get Book Here

Book Description
Handbook of Generation IV Nuclear Reactors, Second Edition is a fully revised and updated comprehensive resource on the latest research and advances in generation IV nuclear reactor concepts. Editor Igor Pioro and his team of expert contributors have updated every chapter to reflect advances in the field since the first edition published in 2016. The book teaches the reader about available technologies, future prospects and the feasibility of each concept presented, equipping them users with a strong skillset which they can apply to their own work and research. Provides a fully updated, revised and comprehensive handbook dedicated entirely to generation IV nuclear reactors Includes new trends and developments since the first publication, as well as brand new case studies and appendices Covers the latest research, developments and design information surrounding generation IV nuclear reactors

Parametric Investigation of Brayton Cycle for High Temperature Gas-Cooled Reactor

Parametric Investigation of Brayton Cycle for High Temperature Gas-Cooled Reactor PDF Author: Chang Oh
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The Idaho National Engineering and EnvironmentalLaboratory (INEEL) is investigating a Brayton cycle efficiencyimprovement on a high temperature gas-cooled reactor (HTGR)as part of Generation-IV nuclear engineering research initiative. In this project, we are investigating helium Brayton cyclesfor the secondary side of an indirect energy conversion system. Ultimately we will investigate the improvement of the Braytoncycle using other fluids, such as supercritical carbon dioxide. Prior to the cycle improvement study, we established a numberof baseline cases for the helium indirect Brayton cycle. Thesecases look at both single-shaft and multiple-shaftturbomachinary. The baseline cases are based on a 250 MWthermal pebble bed HTGR. The results from this study areapplicable to other reactor concepts such as a very hightemperature gas-cooled reactor (VHTR), fast gas-cooled reactor(FGR), supercritical water reactor (SWR), and others. In this study, we are using the HYSYS computer code foroptimization of the helium Brayton cycle. Besides the HYSYSprocess optimization, we performed parametric study to see theeffect of important parameters on the cycle efficiency. Forthese parametric calculations, we use a cycle efficiency modelthat was developed based on the Visual Basic computerlanguage. As a part of this study we are currently investigatedsingle-shaft vs. multiple shaft arrangement for cycle efficiencyand comparison, which will be published in the next paper. The ultimate goal of this study is to use supercriticalcarbon dioxide for the HTGR power conversion loop in orderto improve the cycle efficiency to values great than that of thehelium Brayton cycle. This paper includes preliminary calculations of the steadystate overall Brayton cycle efficiency based on the pebble bedreactor reference design (helium used as the working fluid) andcompares those results with an initial calculation of a CO2Brayton cycle.

Optimization and Comparison of Direct and Indirect Supercritical Carbon Dioxide Power Plant Cycles for Nuclear Applications

Optimization and Comparison of Direct and Indirect Supercritical Carbon Dioxide Power Plant Cycles for Nuclear Applications PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
There have been a number of studies involving the use of gases operating in the supercritical mode for power production and process heat applications. Supercritical carbon dioxide (CO2) is particularly attractive because it is capable of achieving relatively high power conversion cycle efficiencies in the temperature range between 550 C and 750 C. Therefore, it has the potential for use with any type of high-temperature nuclear reactor concept, assuming reactor core outlet temperatures of at least 550 C. The particular power cycle investigated in this paper is a supercritical CO2 Recompression Brayton Cycle. The CO2 Recompression Brayton Cycle can be used as either a direct or indirect power conversion cycle, depending on the reactor type and reactor outlet temperature. The advantage of this cycle when compared to the helium Brayton cycle is the lower required operating temperature; 550 C versus 850 C. However, the supercritical CO2 Recompression Brayton Cycle requires an operating pressure in the range of 20 MPa, which is considerably higher than the required helium Brayton cycle operating pressure of 8 MPa. This paper presents results of analyses performed using the UniSim process analyses software to evaluate the performance of both a direct and indirect supercritical CO2 Brayton Recompression cycle for different reactor outlet temperatures. The direct supercritical CO2 cycle transferred heat directly from a 600 MWt reactor to the supercritical CO2 working fluid supplied to the turbine generator at approximately 20 MPa. The indirect supercritical CO2 cycle assumed a helium-cooled Very High Temperature Reactor (VHTR), operating at a primary system pressure of approximately 7.0 MPa, delivered heat through an intermediate heat exchanger to the secondary indirect supercritical CO2 Brayton Recompression cycle, again operating at a pressure of about 20 MPa. For both the direct and indirect cycles, sensitivity calculations were performed for reactor outlet temperature between 550 C and 850 C. The UniSim models used realistic component parameters and operating conditions to model the complete reactor and power conversion systems. CO2 properties were evaluated, and the operating ranges of the cycles were adjusted to take advantage of the rapidly changing properties of CO2 near the critical point. The results of the analyses showed that, for the direct supercritical CO2 power cycle, thermal efficiencies in the range of 40 to 50% can be achieved. For the indirect supercritical CO2 power cycle, thermal efficiencies were approximately 10% lower than those obtained for the direct cycle over the same reactor outlet temperature range.

Mass Optimization of a Supercritical CO2 Brayton Cycle with a Direct Cooled Nuclear Reactor for Space Surface Power

Mass Optimization of a Supercritical CO2 Brayton Cycle with a Direct Cooled Nuclear Reactor for Space Surface Power PDF Author: Becky Sondelski
Publisher:
ISBN:
Category :
Languages : en
Pages : 236

Get Book Here

Book Description


Performance Improvement Options for the Supercritical Carbon Dioxide Brayton Cycle

Performance Improvement Options for the Supercritical Carbon Dioxide Brayton Cycle PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The supercritical carbon dioxide (S-CO2) Brayton cycle is under development at Argonne National Laboratory as an advanced power conversion technology for Sodium-Cooled Fast Reactors (SFRs) as well as other Generation IV advanced reactors as an alternative to the traditional Rankine steam cycle. For SFRs, the S-CO2 Brayton cycle eliminates the need to consider sodium-water reactions in the licensing and safety evaluation, reduces the capital cost of the SFR plant, and increases the SFR plant efficiency. Even though the S-CO2 cycle has been under development for some time and optimal sets of operating parameters have been determined, those earlier development and optimization studies have largely been directed at applications to other systems such as gas-cooled reactors which have higher operating temperatures than SFRs. In addition, little analysis has been carried out to investigate cycle configurations deviating from the selected 'recompression' S-CO2 cycle configuration. In this work, several possible ways to improve S-CO2 cycle performance for SFR applications have been identified and analyzed. One set of options incorporates optimization approaches investigated previously, such as variations in the maximum and minimum cycle pressure and minimum cycle temperature, as well as a tradeoff between the component sizes and the cycle performance. In addition, the present investigation also covers options which have received little or no attention in the previous studies. Specific options include a 'multiple-recompression' cycle configuration, intercooling and reheating, as well as liquid-phase CO2 compression (pumping) either by CO2 condensation or by a direct transition from the supercritical to the liquid phase. Some of the options considered did not improve the cycle efficiency as could be anticipated beforehand. Those options include: a double recompression cycle, intercooling between the compressor stages, and reheating between the turbine stages. Analyses carried out as part of the current investigation confirm the possibilities of improving the cycle efficiency that have been identified in previous investigations. The options in this group include: increasing the heat exchanger and turbomachinery sizes, raising of the cycle high end pressure (although the improvement potential of this option is very limited), and optimization of the low end temperature and/or pressure to operate as close to the (pseudo) critical point as possible. Analyses carried out for the present investigation show that significant cycle performance improvement can sometimes be realized if the cycle operates below the critical temperature at its low end. Such operation, however, requires the availability of a heat sink with a temperature lower than 30 C for which applicability of this configuration is dependent upon the climate conditions where the plant is constructed (i.e., potential performance improvements are site specific). Overall, it is shown that the S-CO2 Brayton cycle efficiency can potentially be increased to 45 %, if a low temperature heat sink is available and incorporation of larger components (e.g., heat exchangers or turbomachinery) having greater component efficiencies does not significantly increase the overall plant cost.