Convergence Analysis of Recurrent Neural Networks

Convergence Analysis of Recurrent Neural Networks PDF Author: Zhang Yi
Publisher: Springer Science & Business Media
ISBN: 1475738196
Category : Computers
Languages : en
Pages : 244

Get Book Here

Book Description
Since the outstanding and pioneering research work of Hopfield on recurrent neural networks (RNNs) in the early 80s of the last century, neural networks have rekindled strong interests in scientists and researchers. Recent years have recorded a remarkable advance in research and development work on RNNs, both in theoretical research as weIl as actual applications. The field of RNNs is now transforming into a complete and independent subject. From theory to application, from software to hardware, new and exciting results are emerging day after day, reflecting the keen interest RNNs have instilled in everyone, from researchers to practitioners. RNNs contain feedback connections among the neurons, a phenomenon which has led rather naturally to RNNs being regarded as dynamical systems. RNNs can be described by continuous time differential systems, discrete time systems, or functional differential systems, and more generally, in terms of non linear systems. Thus, RNNs have to their disposal, a huge set of mathematical tools relating to dynamical system theory which has tumed out to be very useful in enabling a rigorous analysis of RNNs.

Convergence Analysis of Recurrent Neural Networks

Convergence Analysis of Recurrent Neural Networks PDF Author: Zhang Yi
Publisher: Springer Science & Business Media
ISBN: 1475738196
Category : Computers
Languages : en
Pages : 244

Get Book Here

Book Description
Since the outstanding and pioneering research work of Hopfield on recurrent neural networks (RNNs) in the early 80s of the last century, neural networks have rekindled strong interests in scientists and researchers. Recent years have recorded a remarkable advance in research and development work on RNNs, both in theoretical research as weIl as actual applications. The field of RNNs is now transforming into a complete and independent subject. From theory to application, from software to hardware, new and exciting results are emerging day after day, reflecting the keen interest RNNs have instilled in everyone, from researchers to practitioners. RNNs contain feedback connections among the neurons, a phenomenon which has led rather naturally to RNNs being regarded as dynamical systems. RNNs can be described by continuous time differential systems, discrete time systems, or functional differential systems, and more generally, in terms of non linear systems. Thus, RNNs have to their disposal, a huge set of mathematical tools relating to dynamical system theory which has tumed out to be very useful in enabling a rigorous analysis of RNNs.

Neural Networks: Computational Models and Applications

Neural Networks: Computational Models and Applications PDF Author: Huajin Tang
Publisher: Springer Science & Business Media
ISBN: 3540692258
Category : Computers
Languages : en
Pages : 310

Get Book Here

Book Description
Neural Networks: Computational Models and Applications presents important theoretical and practical issues in neural networks, including the learning algorithms of feed-forward neural networks, various dynamical properties of recurrent neural networks, winner-take-all networks and their applications in broad manifolds of computational intelligence: pattern recognition, uniform approximation, constrained optimization, NP-hard problems, and image segmentation. The book offers a compact, insightful understanding of the broad and rapidly growing neural networks domain.

Subspace Learning of Neural Networks

Subspace Learning of Neural Networks PDF Author: Jian Cheng Lv
Publisher: CRC Press
ISBN: 1439815364
Category : Computers
Languages : en
Pages : 257

Get Book Here

Book Description
Using real-life examples to illustrate the performance of learning algorithms and instructing readers how to apply them to practical applications, this work offers a comprehensive treatment of subspace learning algorithms for neural networks. The authors summarize a decade of high quality research offering a host of practical applications. They demonstrate ways to extend the use of algorithms to fields such as encryption communication, data mining, computer vision, and signal and image processing to name just a few. The brilliance of the work lies with how it coherently builds a theoretical understanding of the convergence behavior of subspace learning algorithms through a summary of chaotic behaviors.

Advances in Neural Networks - ISNN 2007

Advances in Neural Networks - ISNN 2007 PDF Author: Derong Liu
Publisher: Springer Science & Business Media
ISBN: 3540723951
Category : Computers
Languages : en
Pages : 1210

Get Book Here

Book Description
This book is part of a three volume set that constitutes the refereed proceedings of the 4th International Symposium on Neural Networks, ISNN 2007, held in Nanjing, China in June 2007. Coverage includes neural networks for control applications, robotics, data mining and feature extraction, chaos and synchronization, support vector machines, fault diagnosis/detection, image/video processing, and applications of neural networks.

Neural Network Modeling and Identification of Dynamical Systems

Neural Network Modeling and Identification of Dynamical Systems PDF Author: Yury Tiumentsev
Publisher: Academic Press
ISBN: 0128154306
Category : Science
Languages : en
Pages : 334

Get Book Here

Book Description
Neural Network Modeling and Identification of Dynamical Systems presents a new approach on how to obtain the adaptive neural network models for complex systems that are typically found in real-world applications. The book introduces the theoretical knowledge available for the modeled system into the purely empirical black box model, thereby converting the model to the gray box category. This approach significantly reduces the dimension of the resulting model and the required size of the training set. This book offers solutions for identifying controlled dynamical systems, as well as identifying characteristics of such systems, in particular, the aerodynamic characteristics of aircraft. - Covers both types of dynamic neural networks (black box and gray box) including their structure, synthesis and training - Offers application examples of dynamic neural network technologies, primarily related to aircraft - Provides an overview of recent achievements and future needs in this area

Advances in Neural Networks - ISNN 2006

Advances in Neural Networks - ISNN 2006 PDF Author: Jun Wang
Publisher: Springer
ISBN: 3540344403
Category : Computers
Languages : en
Pages : 1507

Get Book Here

Book Description
This is Volume I of a three volume set constituting the refereed proceedings of the Third International Symposium on Neural Networks, ISNN 2006. 616 revised papers are organized in topical sections on neurobiological analysis, theoretical analysis, neurodynamic optimization, learning algorithms, model design, kernel methods, data preprocessing, pattern classification, computer vision, image and signal processing, system modeling, robotic systems, transportation systems, communication networks, information security, fault detection, financial analysis, bioinformatics, biomedical and industrial applications, and more.

Recurrent Neural Networks for Prediction

Recurrent Neural Networks for Prediction PDF Author: Danilo Mandic
Publisher:
ISBN:
Category :
Languages : en
Pages : 297

Get Book Here

Book Description
New technologies in engineering, physics and biomedicine are demanding increasingly complex methods of digital signal processing. By presenting the latest research work the authors demonstrate how real-time recurrent neural networks (RNNs) can be implemented to expand the range of traditional signal processing techniques and to help combat the problem of prediction. Within this text neural networks are considered as massively interconnected nonlinear adaptive filters.? Analyses the relationships between RNNs and various nonlinear models and filters, and introduces spatio-temporal architectur.

Advances in Neural Networks -- ISNN 2010

Advances in Neural Networks -- ISNN 2010 PDF Author: James Kwok
Publisher: Springer
ISBN: 3642133185
Category : Computers
Languages : en
Pages : 670

Get Book Here

Book Description
This book and its sister volume collect refereed papers presented at the 7th Inter- tional Symposium on Neural Networks (ISNN 2010), held in Shanghai, China, June 6-9, 2010. Building on the success of the previous six successive ISNN symposiums, ISNN has become a well-established series of popular and high-quality conferences on neural computation and its applications. ISNN aims at providing a platform for scientists, researchers, engineers, as well as students to gather together to present and discuss the latest progresses in neural networks, and applications in diverse areas. Nowadays, the field of neural networks has been fostered far beyond the traditional artificial neural networks. This year, ISNN 2010 received 591 submissions from more than 40 countries and regions. Based on rigorous reviews, 170 papers were selected for publication in the proceedings. The papers collected in the proceedings cover a broad spectrum of fields, ranging from neurophysiological experiments, neural modeling to extensions and applications of neural networks. We have organized the papers into two volumes based on their topics. The first volume, entitled “Advances in Neural Networks- ISNN 2010, Part 1,” covers the following topics: neurophysiological foundation, theory and models, learning and inference, neurodynamics. The second volume en- tled “Advance in Neural Networks ISNN 2010, Part 2” covers the following five topics: SVM and kernel methods, vision and image, data mining and text analysis, BCI and brain imaging, and applications.

Advances in Neural Networks

Advances in Neural Networks PDF Author: Fuchun Sun
Publisher: Springer
ISBN: 3540877320
Category : Computers
Languages : en
Pages : 939

Get Book Here

Book Description
The two volume set LNCS 5263/5264 constitutes the refereed proceedings of the 5th International Symposium on Neural Networks, ISNN 2008, held in Beijing, China in September 2008. The 192 revised papers presented were carefully reviewed and selected from a total of 522 submissions. The papers are organized in topical sections on computational neuroscience; cognitive science; mathematical modeling of neural systems; stability and nonlinear analysis; feedforward and fuzzy neural networks; probabilistic methods; supervised learning; unsupervised learning; support vector machine and kernel methods; hybrid optimisation algorithms; machine learning and data mining; intelligent control and robotics; pattern recognition; audio image processinc and computer vision; fault diagnosis; applications and implementations; applications of neural networks in electronic engineering; cellular neural networks and advanced control with neural networks; nature inspired methods of high-dimensional discrete data analysis; pattern recognition and information processing using neural networks.

Advances in Neural Networks -- ISNN 2010

Advances in Neural Networks -- ISNN 2010 PDF Author: Bao-Liang Lu
Publisher: Springer Science & Business Media
ISBN: 3642132774
Category : Computers
Languages : en
Pages : 787

Get Book Here

Book Description
This book and its sister volume constitutes the proceedings of the 7th International Symposium on Neural Networks, ISNN 2010, held in Shanghai, China, June 6-9, 2010. The 170 revised full papers of Part I and Part II were carefully selected from 591 submissions and focus on topics such as Neurophysiological Foundation, Theory and Models, Learning and Inference, and Neurodynamics. The second volume, Part II (LNCS 6064) covers the following 5 topics: SVM and Kernel Methods, Vision and Image, Data Mining and Text Analysis, BCI and Brain Imaging, and applications.