Controlling the growth of nanoparticles produced in a high power pulsed plasma

Controlling the growth of nanoparticles produced in a high power pulsed plasma PDF Author: Rickard Gunnarsson
Publisher: Linköping University Electronic Press
ISBN: 9176854663
Category :
Languages : en
Pages : 69

Get Book Here

Book Description
Nanotechnology can profoundly benefit our health, environment and everyday life. In order to make this a reality, both technological and theoretical advancements of the nanomaterial synthesis methods are needed. A nanoparticle is one of the fundamental building blocks in nanotechnology and this thesis describes the control of the nucleation, growth and oxidation of titanium particles produced in a pulsed plasma. It will be shown that by controlling the process conditions both the composition (oxidationstate) and size of the particles can be varied. The experimental results are supported by theoretical modeling. If processing conditions are chosen which give a high temperature in the nanoparticle growth environment, oxygen was found to be necessary in order to nucleate the nanoparticles. The two reasons for this are 1: the lower vapor pressure of a titanium oxide cluster compared to a titanium cluster, meaning a lower probability of evaporation, and 2: the ability of a cluster to cool down by ejecting an oxygen atom when an oxygen molecule condenses on its surface. When the oxygen gas flow was slightly increased, the nanoparticle yield and oxidation state increased. A further increase caused a decrease in particle yield which is attributed to a slight oxidation ofthe cathode. By varying the oxygen flow, it was possible to control the oxidation state of the nanoparticles without fully oxidizing the cathode. Pure titanium nanoparticles could not be produced in a high vacuum system because oxygen containing gases such as residual water vapour have a profound influence on nanoparticle yield and composition. In an ultrahigh vacuum system titanium nanoparticles without significantoxygen contamination were produced by reducing the temperature of the growth environment and increasing the pressure of an argon-helium gas mixture within whichthe nanoparticles grew. The dimer formation rate necessary for this is only achievable at higher pressures. After a dimer has formed, it needs to grow by colliding with a titanium atom followed by cooling by collisions with multiple buffer gas atoms. The condensation event heats up the cluster to a temperature much higher than the gas temperature, where it is during a short time susceptible to evaporation. When the clusters’ internal energy has decreased by collisions with the gas to less than the energy required to evaporate a titanium atom, it is temporarily stable until the next condensation event occurs. The temperature difference by which the cluster has to cool down before it is temporarily stable is exactly as many kelvins as the gas temperature.The addition of helium was found to decrease the temperature of the gas, making it possible for nanoparticles of pure titanium to grow. The process window where this is possible was determined and the results presented opens up new possibilities to synthesize particles with a controlled contamination level and deposition rate.The size of the nanoparticles has been controlled by three means. The first is to change the electrical potential around the growth zone, which allows for size (diameter) control in the order of 25 to 75 nm without influencing the oxygen content of the particles. The second means is by increasing the pressure which decreases the ambipolar diffusion rate of the ions resulting in a higher growth material density. By doing this, the particle size can be increased from 50 to 250 nm, however the oxygen content also increases with increasing pressure when this is done in a high vacuum system. The last means of size control was by adding a helium flow to the process where higher flows resulted in smaller nanoparticle sizes. When changing the pressure in high vacuum, the morphology of the nanoparticles could be controlled. At low pressures, highly faceted near spherical particles were produced. Increasing the pressure caused the formation of cubic particles which appear to ‘fracture’ at higher pressures. At the highest pressure investigated, the particles became poly-crystalline with a cauliflower shape and this morphology was attributed to a lowad atom mobility. The ability to control the size, morphology and composition of the nanoparticles determines the success of applying the process to manufacture devices. In related work presented in this thesis it is shown that 150-200 nm molybdenum particles with cauliflower morphology were found to scatter light in which made them useful in photovoltaic applications, and the size of titanium dioxide nanoparticles were found to influence the selectivity of graphene based gas sensors.

Controlling the growth of nanoparticles produced in a high power pulsed plasma

Controlling the growth of nanoparticles produced in a high power pulsed plasma PDF Author: Rickard Gunnarsson
Publisher: Linköping University Electronic Press
ISBN: 9176854663
Category :
Languages : en
Pages : 69

Get Book Here

Book Description
Nanotechnology can profoundly benefit our health, environment and everyday life. In order to make this a reality, both technological and theoretical advancements of the nanomaterial synthesis methods are needed. A nanoparticle is one of the fundamental building blocks in nanotechnology and this thesis describes the control of the nucleation, growth and oxidation of titanium particles produced in a pulsed plasma. It will be shown that by controlling the process conditions both the composition (oxidationstate) and size of the particles can be varied. The experimental results are supported by theoretical modeling. If processing conditions are chosen which give a high temperature in the nanoparticle growth environment, oxygen was found to be necessary in order to nucleate the nanoparticles. The two reasons for this are 1: the lower vapor pressure of a titanium oxide cluster compared to a titanium cluster, meaning a lower probability of evaporation, and 2: the ability of a cluster to cool down by ejecting an oxygen atom when an oxygen molecule condenses on its surface. When the oxygen gas flow was slightly increased, the nanoparticle yield and oxidation state increased. A further increase caused a decrease in particle yield which is attributed to a slight oxidation ofthe cathode. By varying the oxygen flow, it was possible to control the oxidation state of the nanoparticles without fully oxidizing the cathode. Pure titanium nanoparticles could not be produced in a high vacuum system because oxygen containing gases such as residual water vapour have a profound influence on nanoparticle yield and composition. In an ultrahigh vacuum system titanium nanoparticles without significantoxygen contamination were produced by reducing the temperature of the growth environment and increasing the pressure of an argon-helium gas mixture within whichthe nanoparticles grew. The dimer formation rate necessary for this is only achievable at higher pressures. After a dimer has formed, it needs to grow by colliding with a titanium atom followed by cooling by collisions with multiple buffer gas atoms. The condensation event heats up the cluster to a temperature much higher than the gas temperature, where it is during a short time susceptible to evaporation. When the clusters’ internal energy has decreased by collisions with the gas to less than the energy required to evaporate a titanium atom, it is temporarily stable until the next condensation event occurs. The temperature difference by which the cluster has to cool down before it is temporarily stable is exactly as many kelvins as the gas temperature.The addition of helium was found to decrease the temperature of the gas, making it possible for nanoparticles of pure titanium to grow. The process window where this is possible was determined and the results presented opens up new possibilities to synthesize particles with a controlled contamination level and deposition rate.The size of the nanoparticles has been controlled by three means. The first is to change the electrical potential around the growth zone, which allows for size (diameter) control in the order of 25 to 75 nm without influencing the oxygen content of the particles. The second means is by increasing the pressure which decreases the ambipolar diffusion rate of the ions resulting in a higher growth material density. By doing this, the particle size can be increased from 50 to 250 nm, however the oxygen content also increases with increasing pressure when this is done in a high vacuum system. The last means of size control was by adding a helium flow to the process where higher flows resulted in smaller nanoparticle sizes. When changing the pressure in high vacuum, the morphology of the nanoparticles could be controlled. At low pressures, highly faceted near spherical particles were produced. Increasing the pressure caused the formation of cubic particles which appear to ‘fracture’ at higher pressures. At the highest pressure investigated, the particles became poly-crystalline with a cauliflower shape and this morphology was attributed to a lowad atom mobility. The ability to control the size, morphology and composition of the nanoparticles determines the success of applying the process to manufacture devices. In related work presented in this thesis it is shown that 150-200 nm molybdenum particles with cauliflower morphology were found to scatter light in which made them useful in photovoltaic applications, and the size of titanium dioxide nanoparticles were found to influence the selectivity of graphene based gas sensors.

Controlling the Growth of Nanoparticles Produced in a Highpower Pulsed Plasma

Controlling the Growth of Nanoparticles Produced in a Highpower Pulsed Plasma PDF Author: Rickard Gunnarsson
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Nanotechnology can profoundly benefit our health, environment and everyday life. In order to make this a reality, both technological and theoretical advancements of the nanomaterial synthesis methods are needed. A nanoparticle is one of the fundamental building blocks in nanotechnology and this thesis describes the control of the nucleation, growth and oxidation of titanium particles produced in a pulsed plasma. It will be shown that by controlling the process conditions both the composition (oxidationstate) and size of the particles can be varied. The experimental results are supported by theoretical modeling. If processing conditions are chosen which give a high temperature in the nanoparticle growth environment, oxygen was found to be necessary in order to nucleate the nanoparticles. The two reasons for this are 1: the lower vapor pressure of a titanium oxide cluster compared to a titanium cluster, meaning a lower probability of evaporation, and 2: the ability of a cluster to cool down by ejecting an oxygen atom when an oxygen molecule condenses on its surface. When the oxygen gas flow was slightly increased, the nanoparticle yield and oxidation state increased. A further increase caused a decrease in particle yield which is attributed to a slight oxidation ofthe cathode. By varying the oxygen flow, it was possible to control the oxidation state of the nanoparticles without fully oxidizing the cathode. Pure titanium nanoparticles could not be produced in a high vacuum system because oxygen containing gases such as residual water vapour have a profound influence on nanoparticle yield and composition. In an ultrahigh vacuum system titanium nanoparticles without significantoxygen contamination were produced by reducing the temperature of the growth environment and increasing the pressure of an argon-helium gas mixture within whichthe nanoparticles grew. The dimer formation rate necessary for this is only achievable at higher pressures. After a dimer has formed, it needs to grow by colliding with a titanium atom followed by cooling by collisions with multiple buffer gas atoms. The condensation event heats up the cluster to a temperature much higher than the gas temperature, where it is during a short time susceptible to evaporation. When the clusters’ internal energy has decreased by collisions with the gas to less than the energy required to evaporate a titanium atom, it is temporarily stable until the next condensation event occurs. The temperature difference by which the cluster has to cool down before it is temporarily stable is exactly as many kelvins as the gas temperature.The addition of helium was found to decrease the temperature of the gas, making it possible for nanoparticles of pure titanium to grow. The process window where this is possible was determined and the results presented opens up new possibilities to synthesize particles with a controlled contamination level and deposition rate.The size of the nanoparticles has been controlled by three means. The first is to change the electrical potential around the growth zone, which allows for size (diameter) control in the order of 25 to 75 nm without influencing the oxygen content of the particles. The second means is by increasing the pressure which decreases the ambipolar diffusion rate of the ions resulting in a higher growth material density. By doing this, the particle size can be increased from 50 to 250 nm, however the oxygen content also increases with increasing pressure when this is done in a high vacuum system. The last means of size control was by adding a helium flow to the process where higher flows resulted in smaller nanoparticle sizes. When changing the pressure in high vacuum, the morphology of the nanoparticles could be controlled. At low pressures, highly faceted near spherical particles were produced. Increasing the pressure caused the formation of cubic particles which appear to ‘fracture’ at higher pressures. At the highest pressure investigated, the particles became poly-crystalline with a cauliflower shape and this morphology was attributed to a lowad atom mobility. The ability to control the size, morphology and composition of the nanoparticles determines the success of applying the process to manufacture devices. In related work presented in this thesis it is shown that 150-200 nm molybdenum particles with cauliflower morphology were found to scatter light in which made them useful in photovoltaic applications, and the size of titanium dioxide nanoparticles were found to influence the selectivity of graphene based gas sensors.

Laser Ablation in Liquids

Laser Ablation in Liquids PDF Author: Guowei Yang
Publisher: CRC Press
ISBN: 9814241520
Category : Science
Languages : en
Pages : 1166

Get Book Here

Book Description
This book focuses on the fundamental concepts and physical and chemical aspects of pulsed laser ablation of solid targets in liquid environments and its applications in the preparation of nanomaterials and fabrication of nanostructures. The areas of focus include basic thermodynamic and kinetic processes of laser ablation in liquids, and its applic

Gas-Phase Synthesis of Nanoparticles

Gas-Phase Synthesis of Nanoparticles PDF Author: Yves Huttel
Publisher: John Wiley & Sons
ISBN: 352769840X
Category : Technology & Engineering
Languages : en
Pages : 420

Get Book Here

Book Description
The first overview of this topic begins with some historical aspects and a survey of the principles of the gas aggregation method. The second part covers modifications of this method resulting in different specialized techniques, while the third discusses the post-growth treatment that can be applied to the nanoparticles. The whole is rounded off by a review of future perspectives and the challenges facing the scientific and industrial communities. An excellent resource for anyone working with the synthesis of nanoparticles, both in academia and industry.

Nanomaterials

Nanomaterials PDF Author: R. Praveen Kumar
Publisher: Academic Press
ISBN: 0128224312
Category : Technology & Engineering
Languages : en
Pages : 863

Get Book Here

Book Description
Nanomaterials: Application in Biofuels and Bioenergy Production Systems looks at how biofuels and bioenergy can be part of the "sustainable" solution to the worlds energy problems. By addressing bioenergy products compared to their fossil energy counterparts, covering research and development in biofuels applied with nanomaterials this book analyzes the future trends and how biofuels and bioenergy can contribute to its optimization. Starting from fundamentals up to synthesis, characterization and applications of nanomaterials in biofuels and bioenergy production systems, the chapters include the procedures needed for introducing nanomaterials in these specific sectors along with the benefits derived from their applications. Including the hazards and environmental effects of nanomaterials in bioenergy applications, sustainability issues and a techno-economic analysis of the topic, this book provides researchers in bioscience, energy & environment and bioengineering with an up to date look at the full life cycle assessment of nanomaterials in bioenergy. Provides a one stop solution manual for applications of nanomaterials in bioenergy and biofuels Includes biofuel applications with compatible global application case studies Addresses the demand for environmental and techno-economic analysis of nanomaterials applications

Plasma Processing of Nanomaterials

Plasma Processing of Nanomaterials PDF Author: R. Mohan Sankaran
Publisher: CRC Press
ISBN: 1351832948
Category : Science
Languages : en
Pages : 433

Get Book Here

Book Description
We are at a critical evolutionary juncture in the research and development of low-temperature plasmas, which have become essential to synthesizing and processing vital nanoscale materials. More and more industries are increasingly dependent on plasma technology to develop integrated small-scale devices, but physical limits to growth, and other challenges, threaten progress. Plasma Processing of Nanomaterials is an in-depth guide to the art and science of plasma-based chemical processes used to synthesize, process, and modify various classes of nanoscale materials such as nanoparticles, carbon nanotubes, and semiconductor nanowires. Plasma technology enables a wide range of academic and industrial applications in fields including electronics, textiles, automotives, aerospace, and biomedical. A prime example is the semiconductor industry, in which engineers revolutionized microelectronics by using plasmas to deposit and etch thin films and fabricate integrated circuits. An overview of progress and future potential in plasma processing, this reference illustrates key experimental and theoretical aspects by presenting practical examples of: Nanoscale etching/deposition of thin films Catalytic growth of carbon nanotubes and semiconductor nanowires Silicon nanoparticle synthesis Functionalization of carbon nanotubes Self-organized nanostructures Significant advances are expected in nanoelectronics, photovoltaics, and other emerging fields as plasma technology is further optimized to improve the implementation of nanomaterials with well-defined size, shape, and composition. Moving away from the usual focus on wet techniques embraced in chemistry and physics, the author sheds light on pivotal breakthroughs being made by the smaller plasma community. Written for a diverse audience working in fields ranging from nanoelectronics and energy sensors to catalysis and nanomedicine, this resource will help readers improve development and application of nanomaterials in their own work. About the Author: R. Mohan Sankaran received the American Vacuum Society’s 2011 Peter Mark Memorial Award for his outstanding contributions to tandem plasma synthesis.

Plasma for Energy and Catalytic Nanomaterials

Plasma for Energy and Catalytic Nanomaterials PDF Author: Lanbo Di
Publisher: MDPI
ISBN: 3039286544
Category : Science
Languages : en
Pages : 234

Get Book Here

Book Description
The Special Issue “Plasma for Energy and Catalytic Nanomaterials” highlights the recent progress and advancements in the synthesis and applications of energy and catalytic nanomaterials by plasma. Compared with conventional preparation methods, plasma provides a fast, facile, and environmentally friendly method for synthesizing highly efficient nanomaterials. The synthesized nanomaterials generally show enhanced metal–support interactions, small-sized metal nanoparticles, specific metal structures, and abundant oxygen vacancies. The plasma method allows thermodynamically and dynamically difficult reactions to proceed at low temperatures due to the activation of energetic electrons. Despite the growing interest in plasma for energy and catalytic nanomaterials, the synthesis mechanisms of nanomaterials using plasma still remain obscure due to the complicated physical and chemical reactions that occur during plasma preparation. The Guest Editors and the MDPI staff are therefore pleased to offer this Special Issue to interested reader, including graduate and Ph.D. students, postdoctoral researchers, and the entire community interested in the field of nanomaterials. We share the conviction that the Issue can serve as a useful tool for updating the literature and to aid with the conception of new production and/or research programs. Further dedicated R&D advances are possible based on new instruments and materials under development.

Nanomaterials in Biomass Conversion

Nanomaterials in Biomass Conversion PDF Author: Komal Rizwan
Publisher: Elsevier
ISBN: 0443135010
Category : Technology & Engineering
Languages : en
Pages : 534

Get Book Here

Book Description
Nanomaterials in Biomass Conversion: Advances and Applications for Bioenergy, Biofuels and Bio-based Products critically reviews the basic principles through to the latest advances in the emerging field of nanotechnology for the production of biofuels and bioenergy. Divided into 3 parts, the first five chapters explain the fundamentals of nanomaterials, their properties, characterization, and basic processes for synthesis. Part 2, which constitutes the majority of the book, reviews the various methods and technologies for the conversion of biomass to bioenergy, biofuels, and value-added products using nanomaterials. This includes homogeneous and heterogeneous nano-catalytic systems, nano-photocatalytic conversion, nanomaterial-assisted anaerobic digestion, nanoparticles-immobilized enzymes conversion, the production of biogas, volatile fatty acids, and value-added products, and in carbon capture and conversion to sustainable energy products, as well as the potential of nano-biochar, nano-cellulose, and other nanomaterials in microbial fuel cells, bioelectrochemical systems, and batteries. Finally, Part 3 addresses the techno-economics and financial viability in the context of the circular economy, risk related to toxicology, stability, and environmental impacts, and considers the various challenges and future opportunities of biomass conversion through nanomaterials. Nanomaterials in Biomass Conversion is an invaluable resource for researchers and engineers involved in the production of bioenergy, biofuel, and bioproducts, and will also be of benefit to those interested in environmental remediation, pollution management, and cleaner energy production. Critically examines the role of nanomaterials in the management of waste biomass as applied to bioenergy and biofuels Explains various nanotechnological methods for the conversion of waste biomass into value-added products Discusses the basic principles, operational aspects, ongoing developments, and future perspectives related to the applications of nanotechnologies and nanomaterials in biomass conversion Provides solutions to the key challenges of nanotechnologies and nanomaterials in the conversion of biomass, along with future challenges and risks

Encyclopedia of Plasma Technology - Two Volume Set

Encyclopedia of Plasma Technology - Two Volume Set PDF Author: J. Leon Shohet
Publisher: CRC Press
ISBN: 1000031705
Category : Technology & Engineering
Languages : en
Pages : 1654

Get Book Here

Book Description
Technical plasmas have a wide range of industrial applications. The Encyclopedia of Plasma Technology covers all aspects of plasma technology from the fundamentals to a range of applications across a large number of industries and disciplines. Topics covered include nanotechnology, solar cell technology, biomedical and clinical applications, electronic materials, sustainability, and clean technologies. The book bridges materials science, industrial chemistry, physics, and engineering, making it a must have for researchers in industry and academia, as well as those working on application-oriented plasma technologies. Also Available Online This Taylor & Francis encyclopedia is also available through online subscription, offering a variety of extra benefits for researchers, students, and librarians, including: Citation tracking and alerts Active reference linking Saved searches and marked lists HTML and PDF format options Contact Taylor and Francis for more information or to inquire about subscription options and print/online combination packages. US: (Tel) 1.888.318.2367; (E-mail) [email protected] International: (Tel) +44 (0) 20 7017 6062; (E-mail) [email protected]

Synthesis of Nanoparticles and Nanomaterials

Synthesis of Nanoparticles and Nanomaterials PDF Author: Zhypargul Abdullaeva
Publisher: Springer
ISBN: 3319540750
Category : Technology & Engineering
Languages : en
Pages : 216

Get Book Here

Book Description
This book covers biological synthesis approaches for nanomaterials and nanoparticles, including introductory material on their structure, phase compositions and morphology, nanomaterials chemical, physical, and biological properties. The chapters of this book describe in sequence the synthesis of various nanoparticles by microorganisms, bacteria, yeast, algae, and actynomycetes; plant and plant extract-based synthesis; and green synthesis methods. Each chapter provides basic knowledge on the synthesis of nanomaterials, defines fundamental terms, and aims to build a solid foundation of knowledge, followed by explanations, examples, visual photographs, schemes, tables and illustrations. Each chapter also contains control questions, problem drills, as well as case studies that clarify theory and the explanations given in the text. This book is ideal for researchers and advanced graduate students in materials engineering, biotechnology, and nanotechnology fields. As a reference book this work is also appropriate for engineers in R&D and product manufacturing.