Control of Thermo-acoustic Instabilities in a Pre-mixed Combustor by Fuel Modulation

Control of Thermo-acoustic Instabilities in a Pre-mixed Combustor by Fuel Modulation PDF Author: Christian O. Paschereit
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description

Control of Thermo-acoustic Instabilities in a Pre-mixed Combustor by Fuel Modulation

Control of Thermo-acoustic Instabilities in a Pre-mixed Combustor by Fuel Modulation PDF Author: Christian O. Paschereit
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Thermoacoustic Combustion Instability Control

Thermoacoustic Combustion Instability Control PDF Author: Dan Zhao
Publisher: Academic Press
ISBN: 0323899188
Category : Technology & Engineering
Languages : en
Pages : 1145

Get Book Here

Book Description
Thermoacoustic Combustion Instability Control: Engineering Applications and Computer Codes provides a unique opportunity for researchers, students and engineers to access recent developments from technical, theoretical and engineering perspectives. The book is a compendium of the most recent advances in theoretical and computational modeling and the thermoacoustic instability phenomena associated with multi-dimensional computing methods and recent developments in signal-processing techniques. These include, but are not restricted to a real-time observer, proper orthogonal decomposition (POD), dynamic mode decomposition, Galerkin expansion, empirical mode decomposition, the Lattice Boltzmann method, and associated numerical and analytical approaches. The fundamental physics of thermoacoustic instability occurs in both macro- and micro-scale combustors. Practical methods for alleviating common problems are presented in the book with an analytical approach to arm readers with the tools they need to apply in their own industrial or research setting. Readers will benefit from practicing the worked examples and the training provided on computer coding for combustion technology to achieve useful results and simulations that advance their knowledge and research. Focuses on applications of theoretical and numerical modes with computer codes relevant to combustion technology Includes the most recent modeling and analytical developments motivated by empirical experimental observations in a highly visual way Provides self-contained chapters that include a comprehensive, introductory section that ensures any readers new to this topic are equipped with required technical terms

Performance Enhancement of Gas-Turbine Combustor by Active Control of Fuel Injection and Mixing Process - Theory and Practice

Performance Enhancement of Gas-Turbine Combustor by Active Control of Fuel Injection and Mixing Process - Theory and Practice PDF Author: Christian O. Pascherelt
Publisher:
ISBN:
Category :
Languages : en
Pages : 10

Get Book Here

Book Description
Unstable thermoacoustic modes were investigated and controlled in an experimental low-emission swirl stabilized combustor, in which the acoustic boundary conditions were modified to obtain combustion instability. Axisymmetric and helical unstable modes wore identified for fully premixed combustion These unstable modes were associated with flow instabilities related to the recirculation region on the combustor axis and shear layer in- stabilities at the sudden expansion (dump plane). The combustion structure associated with the different unstable modes was visualized by phase locked images of OH chemi- luminescence, The axisymmetric mode showed large variation of the heat release during one cycle, while the helical modes showed circumferential variations in the location of maximal heat release. Two feedback control methods employed to suppress thermoa- coustic pressure oscillations and to reduce emissions reviewed: proportional acoustic control and fuel modulations. Microphone sensors monitored the combustion process and provided input to the control systems. An acoustic actuation modulated the airflow and thus affected the mixing process and the combustion. Suppression levels of up to 25 dB in the pressure oscillations and a concomitant 10% reduction of NO(x) emissions were obtained. At the optimal control conditions It was shown that the major effect of the control system was to reduce the coherence of the vortical structures which gave rise to the thermoacoustic instability. The specific design of the investigated experimental burner allowed testing the effect of different modulated fuel injection concepts on the combustion instability modes. Symmetric and antisymmetric fuel injection schemes were tested. Suppression levels of up to 12 dB in the pressure oscillations were observed. In some cases concomitant reductions of NO and CO emissions were obtained.

Modeling and Control of Thermoacoustics in a One-dimensional Combustor

Modeling and Control of Thermoacoustics in a One-dimensional Combustor PDF Author: Xiaoling Chen
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
This dissertation examines the model-based optimization of sensor placement, estimation, and control for the active suppression of thermoacoustic instabilities in a one-dimensional combustor. This research is motivated by the increasing use of lean premixed combustion for emission reduction in gas turbine combustors. Thermoacoustic instability is a potentially damaging side effect of lean premixed combustion, caused by the unstable coupling between acoustics and unsteady heat release. There is extensive existing literature on the suppression of this instability, using both passive means such as Helmholtz resonators and active stability control. Much of the work on active combustion stability control relies on the injection of an additional acoustic excitation or fuel supply to break the above undesirable unstable coupling, thereby suppressing instability. Researchers have shown the promise of active combustion instability control both in simulations and laboratory experiments, for both single and multiple modes of instability. Active combustion stability control remains relatively scarce in industrial practice, despite the rich existing literature indicating its potential for success. Several important research questions need to be answered in order to help bridge this gap. First, while much of the recent research on active combustion stability control assumes one-dimensional combustion dynamics, an open question remains regarding the importance of other dynamic effects in the combustor, such as the dynamic interactions between multiple flames. Second, the degree to which the placement of sensors and actuators in a combustor affects the accuracy with which combustion instability dynamics can be estimated remains relatively unexplored in the literature. Third, the suitability of traditional linear model-based estimation and control techniques for stabilizing combustion instabilities with nonlinear heat release dynamics also remains relatively unexplored in the literature. The overarching goal of this dissertation is to address the above gaps using a combination of optimal sensor placement, optimal estimation, and optimal control. Towards this goal, the dissertation makes six specific contributions to the literature: 1. First, the author performs an experimental comparison between thermoacoustic instabilities in single- versus multi-nozzle combustion systems (Chapter 2). This study shows that the dynamic interactions between multiple flames in a multi-nozzle combustor have a non-trivial impact on thermoacoustic instability, especially the time scales of the transient instabilities. This helps characterize and understand the constraints on the practical applicability of one-dimensional combustion instability models for multi-nozzle systems, including the models used in the remainder of this dissertation. 2. Second, the author optimizes the design of a laboratory characterization experiment for a one-dimensional combustor (Chapter 3). This optimization utilizes Fisher information analysis for optimal combustion instability characterization, for the first time. 3. Third, the dissertation shows, using a mix of simulation-based and experimental studies, that the above use of optimal experimental design improves combustion instability parameterization accuracy (Chapter 4). Moreover, by furnishing more accurate combustion instability models, one is able to achieve higher levels of confidence in the robustness of the resulting combustion stability controllers. 4. Fourth, the dissertation presents a novel algorithm that makes it possible to estimate combustion heat release rates from multi-microphone measurements of the resulting acoustic signatures, in a manner that does not require the modeling of heat release dynamics (Chapter 5). This is important because it simplifies the online estimation of heat release dynamics, compared to model-based estimation methods requiring a heat release model. 5. Fifth, the dissertation studies the impact of sensor placement on the observability and LQG control of combustion instabilities governed by a linear $n-\tau$ heat release model (Chapter 6). This work highlights the importance of placing acoustic sensors at specific locations like the pressure mode anti-node points, including the acoustically closed combustor boundary. 6. Finally, the author develops a computational framework for the co-simulation of linear combustor acoustics, model-based combustion stability control, and nonlinear heat release dynamics governed by a level-set solver (Chapter 7). To the best of the author's knowledge, this is the first framework in the literature enabling the simulation-based study of the efficacy of linear control for combustion instabilities characterized by nonlinear heat release dynamics. In making the above contributions to the literature, this dissertation builds on the well-established idea that linear model-based estimation and control can be effective in suppressing combustion instability. The novelty of the dissertation lies in: 1. Pushing the above idea further by examining the degree to which its efficacy can be enhanced further through the use of information theory to optimize sensor placement and experimental design for estimation/control applications. 2. Building a framework that makes it possible to study the efficacy of model-based linear estimation/control in the context of thermo-acoustic instabilities driven by nonlinear heat release dynamics.

Thermoacoustic Instability

Thermoacoustic Instability PDF Author: R. I. Sujith
Publisher: Springer Nature
ISBN: 3030811352
Category : Science
Languages : en
Pages : 484

Get Book Here

Book Description
This book systematically presents the consolidated findings of the phenomenon of self-organization observed during the onset of thermoacoustic instability using approaches from dynamical systems and complex systems theory. Over the last decade, several complex dynamical states beyond limit cycle oscillations such as quasiperiodicity, frequency-locking, period-n, chaos, strange non-chaos, and intermittency have been discovered in thermoacoustic systems operated in laminar and turbulent flow regimes. During the onset of thermoacoustic instability in turbulent systems, an ordered acoustic field and large coherent vortices emerge from the background of turbulent combustion. This emergence of order from disorder in both temporal and spatiotemporal dynamics is explored in the contexts of synchronization, pattern formation, collective interaction, multifractality, and complex networks. For the past six decades, the spontaneous emergence of large amplitude, self-sustained, tonal oscillations in confined combustion systems, characterized as thermoacoustic instability, has remained one of the most challenging areas of research. The presence of such instabilities continues to hinder the development and deployment of high-performance combustion systems used in power generation and propulsion applications. Even with the advent of sophisticated measurement techniques to aid experimental investigations and vast improvements in computational power necessary to capture flow physics in high fidelity simulations, conventional reductionist approaches have not succeeded in explaining the plethora of dynamical behaviors and the associated complexities that arise in practical combustion systems. As a result, models and theories based on such approaches are limited in their application to mitigate or evade thermoacoustic instabilities, which continue to be among the biggest concerns for engine manufacturers today. This book helps to overcome these limitations by providing appropriate methodologies to deal with nonlinear thermoacoustic oscillations, and by developing control strategies that can mitigate and forewarn thermoacoustic instabilities. The book is also beneficial to scientists and engineers studying the occurrence of several other instabilities, such as flow-induced vibrations, compressor surge, aeroacoustics and aeroelastic instabilities in diverse fluid-mechanical environments, to graduate students who intend to apply dynamical systems and complex systems approach to their areas of research, and to physicists who look for experimental applications of their theoretical findings on nonlinear and complex systems.

Causes of Combustion Instabilities with Passive and Active Methods of Control for Practical Application to Gas Turbine Engines

Causes of Combustion Instabilities with Passive and Active Methods of Control for Practical Application to Gas Turbine Engines PDF Author: Michael D. Cornwell
Publisher:
ISBN:
Category :
Languages : en
Pages : 415

Get Book Here

Book Description
Combustion at high pressure in applications such as rocket engines and gas turbine engines commonly experience destructive combustion instabilities. These instabilities results from interactions between combustion heat release, fluid mechanics and acoustics. This research explores the significant affect of unstable fluid mechanics processes in augmenting unstable periodic combustion heat release. The frequency of the unstable heat release may shift to match one of the combustors natural acoustic frequencies which then can result in significant energy exchange from chemical to acoustic energy resulting in thermoacoustic instability. The mechanisms of the fluid mechanics in coupling combustion to acoustics are very broad with many varying mechanisms explained in detail in the first chapter. Significant effort is made in understanding these mechanisms in this research in order to find commonalities, useful for mitigating multiple instability mechanisms. The complexity of combustion instabilities makes mitigation of combustion instabilities very difficult as few mitigation methods have historically proven to be very effective for broad ranges of combustion instabilities. This research identifies turbulence intensity near the forward stagnation point and movement of the forward stagnation point as a common link in what would otherwise appear to be very different instabilities. The most common method of stabilization of both premixed and diffusion flame combustion is through the introduction of swirl. Reverse flow along the centerline is introduced to transport heat and chemically active combustion products back upstream to sustain combustion. This research develops methods to suppress the movement of the forward stagnation point without suppressing the development of the vortex breakdown process which is critical to the transport of heat and reactive species necessary for flame stabilization. These methods are useful in suppressing the local turbulence at the forward stagnation point, limiting dissipation of heat and reactive species significantly improving stability. Combustion hardware is developed and tested to demonstrate the stability principles developed as part of this research. In order to more completely understand combustion instability a very unique method of combustion was researched where there are no discrete points of combustion initiation such as the forward stagnation point typical in many combustion systems including swirl and jet wake stabilized combustion. This class of combustion which has empirical evidence of great stability and efficient combustion with low CO, NOx and UHC emissions is described as high oxidization temperature distributed combustion. This mechanism of combustion is shown to be stable largely because there are no stagnations points susceptible to fluid mechanic perturbations. The final topic of research is active combustion control by fuel modulation. This may be the only practical method of controlling most instabilities with a single technique. As there are many papers reporting active combustion control algorithms this research focused on the complexities of the physics of fuel modulation at frequencies up to 1000 Hz with proportionally controlled flow amplitude. This research into the physics of high speed fluid movement, oscillation mechanical mechanisms and electromagnetics are demonstrated by development and testing of a High Speed Latching Oscillator Valve.

Adaptive Instability Suppression Controls in a Liquid-Fueled Combustor

Adaptive Instability Suppression Controls in a Liquid-Fueled Combustor PDF Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
ISBN: 9781721527069
Category :
Languages : en
Pages : 30

Get Book Here

Book Description
An adaptive control algorithm has been developed for the suppression of combustion thermo-acoustic instabilities. This technique involves modulating the fuel flow in the combustor with a control phase that continuously slides within the stable phase region, in a back and forth motion. The control method is referred to as Adaptive Sliding Phasor Averaged Control (ASPAC). The control method is evaluated against a simplified simulation of the combustion instability. Plans are to validate the control approach against a more physics-based model and an actual experimental combustor rig. Kopasakis, George and DeLaat, John C. Glenn Research Center NASA/TM-2002-211805, NAS 1.15:211805, E-13500, AIAA Paper 2002-4075

Combustion Instabilities in Gas Turbine Engines

Combustion Instabilities in Gas Turbine Engines PDF Author: Timothy C. Lieuwen
Publisher: AIAA (American Institute of Aeronautics & Astronautics)
ISBN:
Category : Science
Languages : en
Pages : 688

Get Book Here

Book Description
This book offers gas turbine users and manufacturers a valuable resource to help them sort through issues associated with combustion instabilities. In the last ten years, substantial efforts have been made in the industrial, governmental, and academic communities to understand the unique issues associated with combustion instabilities in low-emission gas turbines. The objective of this book is to compile these results into a series of chapters that address the various facets of the problem. The Case Studies section speaks to specific manufacturer and user experiences with combustion instabilities in the development stage and in fielded turbine engines. The book then goes on to examine The Fundamental Mechanisms, The Combustor Modeling, and Control Approaches.

Fundamentals of Combustion Processes

Fundamentals of Combustion Processes PDF Author: Sara McAllister
Publisher: Springer Science & Business Media
ISBN: 1441979433
Category : Science
Languages : en
Pages : 315

Get Book Here

Book Description
Fundamentals of Combustion Processes is designed as a textbook for an upper-division undergraduate and graduate level combustion course in mechanical engineering. The authors focus on the fundamental theory of combustion and provide a simplified discussion of basic combustion parameters and processes such as thermodynamics, chemical kinetics, ignition, diffusion and pre-mixed flames. The text includes exploration of applications, example exercises, suggested homework problems and videos of laboratory demonstrations

Engineering Turbulence Modelling and Experiments 6

Engineering Turbulence Modelling and Experiments 6 PDF Author: Wolfgang Rodi
Publisher: Elsevier
ISBN: 0080530958
Category : Science
Languages : en
Pages : 1011

Get Book Here

Book Description
Proceedings of the world renowned ERCOFTAC (International Symposium on Engineering Turbulence Modelling and Measurements). The proceedings include papers dealing with the following areas of turbulence: · Eddy-viscosity and second-order RANS models · Direct and large-eddy simulations and deductions for conventional modelling · Measurement and visualization techniques, experimental studies · Turbulence control · Transition and effects of curvature, rotation and buoyancy on turbulence · Aero-acoustics · Heat and mass transfer and chemically reacting flows · Compressible flows, shock phenomena · Two-phase flows · Applications in aerospace engineering, turbomachinery and reciprocating engines, industrial aerodynamics and wind engineering, and selected chemical engineering problems Turbulence remains one of the key issues in tackling engineering flow problems. These problems are solved more and more by CFD analysis, the reliability of which depends strongly on the performance of the turbulence models employed. Successful simulation of turbulence requires the understanding of the complex physical phenomena involved and suitable models for describing the turbulent momentum, heat and mass transfer. For the understanding of turbulence phenomena, experiments are indispensable, but they are equally important for providing data for the development and testing of turbulence models and hence for CFD software validation. As in other fields of Science, in the rapidly developing discipline of turbulence, swift progress can be achieved only by keeping up to date with recent advances all over the world and by exchanging ideas with colleagues active in related fields.