Iterative Restricted Space Search

Iterative Restricted Space Search PDF Author: José Eduardo Junior Pécora
Publisher:
ISBN:
Category : Assignment problems (Programming)
Languages : en
Pages : 0

Get Book Here

Book Description
Face à la complexité qui caractérise les problèmes d'optimisation de grande taille l'exploration complète de l'espace des solutions devient rapidement un objectif inaccessible. En effet, à mesure que la taille des problèmes augmente, des méthodes de solution de plus en plus sophistiquées sont exigées afin d'assurer un certain niveau d 'efficacité. Ceci a amené une grande partie de la communauté scientifique vers le développement d'outils spécifiques pour la résolution de problèmes de grande taille tels que les méthodes hybrides. Cependant, malgré les efforts consentis dans le développement d'approches hybrides, la majorité des travaux se sont concentrés sur l'adaptation de deux ou plusieurs méthodes spécifiques, en compensant les points faibles des unes par les points forts des autres ou bien en les adaptant afin de collaborer ensemble. Au meilleur de notre connaissance, aucun travail à date n'à été effectué pour développer un cadre conceptuel pour la résolution efficace de problèmes d'optimisation de grande taille, qui soit à la fois flexible, basé sur l'échange d'information et indépendant des méthodes qui le composent. L'objectif de cette thèse est d'explorer cette avenue de recherche en proposant un cadre conceptuel pour les méthodes hybrides, intitulé la recherche itérative de l'espace restreint, ±Iterative Restricted Space Search (IRSS)”, dont, la principale idée est la définition et l'exploration successives de régions restreintes de l'espace de solutions. Ces régions, qui contiennent de bonnes solutions et qui sont assez petites pour être complètement explorées, sont appelées espaces restreints "Restricted Spaces (RS)". Ainsi, l'IRSS est une approche de solution générique, basée sur l'interaction de deux phases algorithmiques ayant des objectifs complémentaires. La première phase consiste à identifier une région restreinte intéressante et la deuxième phase consiste à l'explorer. Le schéma hybride de l'approche de solution permet d'alterner entre les deux phases pour un nombre fixe d'itérations ou jusqu'à l'atteinte d'une certaine limite de temps. Les concepts clés associées au développement de ce cadre conceptuel et leur validation seront introduits et validés graduellement dans cette thèse. Ils sont présentés de manière à permettre au lecteur de comprendre les problèmes que nous avons rencontrés en cours de développement et comment les solutions ont été conçues et implémentées. À cette fin, la thèse a été divisée en quatre parties. La première est consacrée à la synthèse de l'état de l'art dans le domaine de recherche sur les méthodes hybrides. Elle présente les principales approches hybrides développées et leurs applications. Une brève description des approches utilisant le concept de restriction d'espace est aussi présentée dans cette partie. La deuxième partie présente les concepts clés de ce cadre conceptuel. Il s'agit du processus d'identification des régions restreintes et des deux phases de recherche. Ces concepts sont mis en oeuvre dans un schéma hybride heuristique et méthode exacte. L'approche a été appliquée à un problème d'ordonnancement avec deux niveaux de décision, relié au contexte des pâtes et papier: "Pulp Production Scheduling Problem". La troisième partie a permit d'approfondir les concepts développés et ajuster les limitations identifiées dans la deuxième partie, en proposant une recherche itérative appliquée pour l'exploration de RS de grande taille et une structure en arbre binaire pour l'exploration de plusieurs RS. Cette structure a l'avantage d'éviter l'exploration d 'un espace déjà exploré précédemment tout en assurant une diversification naturelle à la méthode. Cette extension de la méthode a été testée sur un problème de localisation et d'allocation en utilisant un schéma d'hybridation heuristique-exact de manière itérative. La quatrième partie généralise les concepts préalablement développés et conçoit un cadre général qui est flexible, indépendant des méthodes utilisées et basé sur un échange d'informations entre les phases. Ce cadre a l'avantage d'être général et pourrait être appliqué à une large gamme de problèmes.

Iterative Restricted Space Search

Iterative Restricted Space Search PDF Author: José Eduardo Junior Pécora
Publisher:
ISBN:
Category : Assignment problems (Programming)
Languages : en
Pages : 0

Get Book Here

Book Description
Face à la complexité qui caractérise les problèmes d'optimisation de grande taille l'exploration complète de l'espace des solutions devient rapidement un objectif inaccessible. En effet, à mesure que la taille des problèmes augmente, des méthodes de solution de plus en plus sophistiquées sont exigées afin d'assurer un certain niveau d 'efficacité. Ceci a amené une grande partie de la communauté scientifique vers le développement d'outils spécifiques pour la résolution de problèmes de grande taille tels que les méthodes hybrides. Cependant, malgré les efforts consentis dans le développement d'approches hybrides, la majorité des travaux se sont concentrés sur l'adaptation de deux ou plusieurs méthodes spécifiques, en compensant les points faibles des unes par les points forts des autres ou bien en les adaptant afin de collaborer ensemble. Au meilleur de notre connaissance, aucun travail à date n'à été effectué pour développer un cadre conceptuel pour la résolution efficace de problèmes d'optimisation de grande taille, qui soit à la fois flexible, basé sur l'échange d'information et indépendant des méthodes qui le composent. L'objectif de cette thèse est d'explorer cette avenue de recherche en proposant un cadre conceptuel pour les méthodes hybrides, intitulé la recherche itérative de l'espace restreint, ±Iterative Restricted Space Search (IRSS)”, dont, la principale idée est la définition et l'exploration successives de régions restreintes de l'espace de solutions. Ces régions, qui contiennent de bonnes solutions et qui sont assez petites pour être complètement explorées, sont appelées espaces restreints "Restricted Spaces (RS)". Ainsi, l'IRSS est une approche de solution générique, basée sur l'interaction de deux phases algorithmiques ayant des objectifs complémentaires. La première phase consiste à identifier une région restreinte intéressante et la deuxième phase consiste à l'explorer. Le schéma hybride de l'approche de solution permet d'alterner entre les deux phases pour un nombre fixe d'itérations ou jusqu'à l'atteinte d'une certaine limite de temps. Les concepts clés associées au développement de ce cadre conceptuel et leur validation seront introduits et validés graduellement dans cette thèse. Ils sont présentés de manière à permettre au lecteur de comprendre les problèmes que nous avons rencontrés en cours de développement et comment les solutions ont été conçues et implémentées. À cette fin, la thèse a été divisée en quatre parties. La première est consacrée à la synthèse de l'état de l'art dans le domaine de recherche sur les méthodes hybrides. Elle présente les principales approches hybrides développées et leurs applications. Une brève description des approches utilisant le concept de restriction d'espace est aussi présentée dans cette partie. La deuxième partie présente les concepts clés de ce cadre conceptuel. Il s'agit du processus d'identification des régions restreintes et des deux phases de recherche. Ces concepts sont mis en oeuvre dans un schéma hybride heuristique et méthode exacte. L'approche a été appliquée à un problème d'ordonnancement avec deux niveaux de décision, relié au contexte des pâtes et papier: "Pulp Production Scheduling Problem". La troisième partie a permit d'approfondir les concepts développés et ajuster les limitations identifiées dans la deuxième partie, en proposant une recherche itérative appliquée pour l'exploration de RS de grande taille et une structure en arbre binaire pour l'exploration de plusieurs RS. Cette structure a l'avantage d'éviter l'exploration d 'un espace déjà exploré précédemment tout en assurant une diversification naturelle à la méthode. Cette extension de la méthode a été testée sur un problème de localisation et d'allocation en utilisant un schéma d'hybridation heuristique-exact de manière itérative. La quatrième partie généralise les concepts préalablement développés et conçoit un cadre général qui est flexible, indépendant des méthodes utilisées et basé sur un échange d'informations entre les phases. Ce cadre a l'avantage d'être général et pourrait être appliqué à une large gamme de problèmes.