Author: Farzad Naeim
Publisher: John Wiley & Sons
ISBN: 9780471149217
Category : Technology & Engineering
Languages : en
Pages : 308
Book Description
Complete, practical coverage of the evaluation, analysis, and design and code requirements of seismic isolation systems. Based on the concept of reducing seismic demand rather than increasing the earthquake resistance capacity of structures, seismic isolation is a surprisingly simple approach to earthquake protection. However, proper application of this technology within complex seismic design code requirements is both complicated and difficult. Design of Seismic Isolated Structures provides complete, up-to-date coverage of seismic isolation, complete with a systematic development of concepts in theory and practical application supplemented by numerical examples. This book helps design professionals navigate and understand the ideas and procedures involved in the analysis, design, and development of specifications for seismic isolated structures. It also provides a framework for satisfying code requirements while retaining the favorable cost-effective and damage control aspects of this new technology. An indispensable resource for practicing and aspiring engineers and architects, Design of Seismic Isolated Structures includes: * Isolation system components. * Complete coverage of code provisions for seismic isolation. * Mechanical characteristics and modeling of isolators. * Buckling and stability of elastomeric isolators. * Examples of seismic isolation designs. * Specifications for the design, manufacture, and testing of isolation devices.
Design of Seismic Isolated Structures
Author: Farzad Naeim
Publisher: John Wiley & Sons
ISBN: 9780471149217
Category : Technology & Engineering
Languages : en
Pages : 308
Book Description
Complete, practical coverage of the evaluation, analysis, and design and code requirements of seismic isolation systems. Based on the concept of reducing seismic demand rather than increasing the earthquake resistance capacity of structures, seismic isolation is a surprisingly simple approach to earthquake protection. However, proper application of this technology within complex seismic design code requirements is both complicated and difficult. Design of Seismic Isolated Structures provides complete, up-to-date coverage of seismic isolation, complete with a systematic development of concepts in theory and practical application supplemented by numerical examples. This book helps design professionals navigate and understand the ideas and procedures involved in the analysis, design, and development of specifications for seismic isolated structures. It also provides a framework for satisfying code requirements while retaining the favorable cost-effective and damage control aspects of this new technology. An indispensable resource for practicing and aspiring engineers and architects, Design of Seismic Isolated Structures includes: * Isolation system components. * Complete coverage of code provisions for seismic isolation. * Mechanical characteristics and modeling of isolators. * Buckling and stability of elastomeric isolators. * Examples of seismic isolation designs. * Specifications for the design, manufacture, and testing of isolation devices.
Publisher: John Wiley & Sons
ISBN: 9780471149217
Category : Technology & Engineering
Languages : en
Pages : 308
Book Description
Complete, practical coverage of the evaluation, analysis, and design and code requirements of seismic isolation systems. Based on the concept of reducing seismic demand rather than increasing the earthquake resistance capacity of structures, seismic isolation is a surprisingly simple approach to earthquake protection. However, proper application of this technology within complex seismic design code requirements is both complicated and difficult. Design of Seismic Isolated Structures provides complete, up-to-date coverage of seismic isolation, complete with a systematic development of concepts in theory and practical application supplemented by numerical examples. This book helps design professionals navigate and understand the ideas and procedures involved in the analysis, design, and development of specifications for seismic isolated structures. It also provides a framework for satisfying code requirements while retaining the favorable cost-effective and damage control aspects of this new technology. An indispensable resource for practicing and aspiring engineers and architects, Design of Seismic Isolated Structures includes: * Isolation system components. * Complete coverage of code provisions for seismic isolation. * Mechanical characteristics and modeling of isolators. * Buckling and stability of elastomeric isolators. * Examples of seismic isolation designs. * Specifications for the design, manufacture, and testing of isolation devices.
Advances in Performance-Based Earthquake Engineering
Author: Michael N. Fardis
Publisher: Springer Science & Business Media
ISBN: 904818746X
Category : Technology & Engineering
Languages : en
Pages : 481
Book Description
Performance-based Earthquake Engineering has emerged before the turn of the century as the most important development in the field of Earthquake Engineering during the last three decades. It has since then started penetrating codes and standards on seismic assessment and retrofitting and making headway towards seismic design standards for new structures as well. The US have been a leader in Performance-based Earthquake Engineering, but also Europe is a major contributor. Two Workshops on Performance-based Earthquake Engineering, held in Bled (Slovenia) in 1997 and 2004 are considered as milestones. The ACES Workshop in Corfu (Greece) of July 2009 builds on them, attracting as contributors world-leaders in Performance-based Earthquake Engineering from North America, Europe and the Pacific rim (Japan, New Zealand, Taiwan, China). It covers the entire scope of Performance-based Earthquake Engineering: Ground motions for performance-based earthquake engineering; Methodologies for Performance-based seismic design and retrofitting; Implementation of Performance-based seismic design and retrofitting; and Advanced seismic testing for performance-based earthquake engineering. Audience: This volume will be of interest to scientists and advanced practitioners in structural earthquake engineering, geotechnical earthquake engineering, engineering seismology, and experimental dynamics.
Publisher: Springer Science & Business Media
ISBN: 904818746X
Category : Technology & Engineering
Languages : en
Pages : 481
Book Description
Performance-based Earthquake Engineering has emerged before the turn of the century as the most important development in the field of Earthquake Engineering during the last three decades. It has since then started penetrating codes and standards on seismic assessment and retrofitting and making headway towards seismic design standards for new structures as well. The US have been a leader in Performance-based Earthquake Engineering, but also Europe is a major contributor. Two Workshops on Performance-based Earthquake Engineering, held in Bled (Slovenia) in 1997 and 2004 are considered as milestones. The ACES Workshop in Corfu (Greece) of July 2009 builds on them, attracting as contributors world-leaders in Performance-based Earthquake Engineering from North America, Europe and the Pacific rim (Japan, New Zealand, Taiwan, China). It covers the entire scope of Performance-based Earthquake Engineering: Ground motions for performance-based earthquake engineering; Methodologies for Performance-based seismic design and retrofitting; Implementation of Performance-based seismic design and retrofitting; and Advanced seismic testing for performance-based earthquake engineering. Audience: This volume will be of interest to scientists and advanced practitioners in structural earthquake engineering, geotechnical earthquake engineering, engineering seismology, and experimental dynamics.
Seismic Analysis of Structures
Author: T. K. Datta
Publisher: John Wiley & Sons
ISBN: 047082462X
Category : Technology & Engineering
Languages : en
Pages : 472
Book Description
While numerous books have been written on earthquakes, earthquake resistance design, and seismic analysis and design of structures, none have been tailored for advanced students and practitioners, and those who would like to have most of the important aspects of seismic analysis in one place. With this book, readers will gain proficiencies in the following: fundamentals of seismology that all structural engineers must know; various forms of seismic inputs; different types of seismic analysis like, time and frequency domain analyses, spectral analysis of structures for random ground motion, response spectrum method of analysis; equivalent lateral load analysis as given in earthquake codes; inelastic response analysis and the concept of ductility; ground response analysis and seismic soil structure interaction; seismic reliability analysis of structures; and control of seismic response of structures. Provides comprehensive coverage, from seismology to seismic control Contains useful empirical equations often required in the seismic analysis of structures Outlines explicit steps for seismic analysis of MDOF systems with multi support excitations Works through solved problems to illustrate different concepts Makes use of MATLAB, SAP2000 and ABAQUAS in solving example problems of the book Provides numerous exercise problems to aid understanding of the subject As one of the first books to present such a comprehensive treatment of the topic, Seismic Analysis of Structures is ideal for postgraduates and researchers in Earthquake Engineering, Structural Dynamics, and Geotechnical Earthquake Engineering. Developed for classroom use, the book can also be used for advanced undergraduate students planning for a career or further study in the subject area. The book will also better equip structural engineering consultants and practicing engineers in the use of standard software for seismic analysis of buildings, bridges, dams, and towers. Lecture materials for instructors available at www.wiley.com/go/dattaseismic
Publisher: John Wiley & Sons
ISBN: 047082462X
Category : Technology & Engineering
Languages : en
Pages : 472
Book Description
While numerous books have been written on earthquakes, earthquake resistance design, and seismic analysis and design of structures, none have been tailored for advanced students and practitioners, and those who would like to have most of the important aspects of seismic analysis in one place. With this book, readers will gain proficiencies in the following: fundamentals of seismology that all structural engineers must know; various forms of seismic inputs; different types of seismic analysis like, time and frequency domain analyses, spectral analysis of structures for random ground motion, response spectrum method of analysis; equivalent lateral load analysis as given in earthquake codes; inelastic response analysis and the concept of ductility; ground response analysis and seismic soil structure interaction; seismic reliability analysis of structures; and control of seismic response of structures. Provides comprehensive coverage, from seismology to seismic control Contains useful empirical equations often required in the seismic analysis of structures Outlines explicit steps for seismic analysis of MDOF systems with multi support excitations Works through solved problems to illustrate different concepts Makes use of MATLAB, SAP2000 and ABAQUAS in solving example problems of the book Provides numerous exercise problems to aid understanding of the subject As one of the first books to present such a comprehensive treatment of the topic, Seismic Analysis of Structures is ideal for postgraduates and researchers in Earthquake Engineering, Structural Dynamics, and Geotechnical Earthquake Engineering. Developed for classroom use, the book can also be used for advanced undergraduate students planning for a career or further study in the subject area. The book will also better equip structural engineering consultants and practicing engineers in the use of standard software for seismic analysis of buildings, bridges, dams, and towers. Lecture materials for instructors available at www.wiley.com/go/dattaseismic
Critical Excitation Methods in Earthquake Engineering
Author: Izuru Takewaki
Publisher: Butterworth-Heinemann
ISBN: 0080994296
Category : Technology & Engineering
Languages : en
Pages : 405
Book Description
After the March 11, 2011, earthquake in Japan, there is overwhelming interest in worst-case analysis, including the critical excitation method. Nowadays, seismic design of structures performed by any seismic code is based on resisting previous natural earthquakes. Critical Excitation Methods in Earthquake Engineering, Second Edition, develops a new framework for modeling design earthquake loads for inelastic structures. The Second Edition, includes three new chapters covering the critical excitation problem for multi-component input ground motions, and that for elastic-plastic structures in a more direct way are incorporated and discussed in more depth. Finally, the problem of earthquake resilience of super high-rise buildings is discussed from broader viewpoints. - Solves problems of earthquake resilience of super high-rise buildings - Three new chapters on critical excitation problem for multi-component input ground motions - Includes numerical examples of one and two-story models
Publisher: Butterworth-Heinemann
ISBN: 0080994296
Category : Technology & Engineering
Languages : en
Pages : 405
Book Description
After the March 11, 2011, earthquake in Japan, there is overwhelming interest in worst-case analysis, including the critical excitation method. Nowadays, seismic design of structures performed by any seismic code is based on resisting previous natural earthquakes. Critical Excitation Methods in Earthquake Engineering, Second Edition, develops a new framework for modeling design earthquake loads for inelastic structures. The Second Edition, includes three new chapters covering the critical excitation problem for multi-component input ground motions, and that for elastic-plastic structures in a more direct way are incorporated and discussed in more depth. Finally, the problem of earthquake resilience of super high-rise buildings is discussed from broader viewpoints. - Solves problems of earthquake resilience of super high-rise buildings - Three new chapters on critical excitation problem for multi-component input ground motions - Includes numerical examples of one and two-story models
The Seismic Design Handbook
Author: Farzad Naeim
Publisher: Springer Science & Business Media
ISBN: 9780412078910
Category : Science
Languages : en
Pages : 476
Book Description
Publisher: Springer Science & Business Media
ISBN: 9780412078910
Category : Science
Languages : en
Pages : 476
Book Description
The Shock and Vibration Digest
Author:
Publisher:
ISBN:
Category : Shock (Mechanics)
Languages : en
Pages : 80
Book Description
Publisher:
ISBN:
Category : Shock (Mechanics)
Languages : en
Pages : 80
Book Description
Seismic Assessment and Retrofit of Reinforced Concrete Buildings
Author: fib Fédération internationale du béton
Publisher: fib Fédération internationale du béton
ISBN: 9782883940642
Category : Technology & Engineering
Languages : en
Pages : 322
Book Description
In most parts of the developed world, the building stock and the civil infrastructure are ageing and in constant need of maintenance, repair and upgrading. Moreover, in the light of our current knowledge and of modern codes, the majority of buildings stock and other types of structures in many parts of the world are substandard and deficient. This is especially so in earthquake-prone regions, as, even there, seismic design of structures is relatively recent. In those regions the major part of the seismic threat to human life and property comes from old buildings. Due to the infrastructure's increasing decay, frequently combined with the need for structural upgrading to meet more stringent design requirements (especially against seismic loads), structural retrofitting is becoming more and more important and receives today considerable emphasis throughout the world. In response to this need, a major part of the fib Model Code 2005, currently under development, is being devoted to structural conservation and maintenance. More importantly, in recognition of the importance of the seismic threat arising from existing substandard buildings, the first standards for structural upgrading to be promoted by the international engineering community and by regulatory authorities alike are for seismic rehabilitation of buildings. This is the case, for example, of Part 3: Strengthening and Repair of Buildings of Eurocode 8 (i. e. of the draft European Standard for earthquake-resistant design), and which is the only one among the current (2003) set of 58 Eurocodes attempting to address the problem of structural upgrading. It is also the case of the recent (2001) ASCE draft standard on Seismic evaluation of existing buildings and of the 1996 Law for promotion of seismic strengthening of existing reinforced concrete structures in Japan. As noted in Chapter 1 of this Bulletin, fib - as CEB and FIP did before - has placed considerable emphasis on assessment and rehabilitation of existing structures. The present Bulletin is a culmination of this effort in the special but very important field of seismic assessment and rehabilitation. It has been elaborated over a period of 4 years by Task Group 7.1 Assessment and retrofit of existing structures of fib Commission 7 Seismic design, a truly international team of experts, representing the expertise and experience of all the important seismic regions of the world. In the course of its work the team had six plenary two-day meetings: in January 1999 in Pavia, Italy; in August 1999 in Raleigh, North Carolina; in February 2000 in Queenstown, New Zealand; in July 2000 in Patras, Greece; in March 2001 in Lausanne, Switzerland; and in August 2001 in Seattle, Washington. In October 2002 the final draft of the Bulletin was presented to public during the 1st fib Congress in Osaka. It was also there that it was approved by fib Commission 7 Seismic Design. The contents is structured into main chapters as follows: 1 Introduction - 2 Performance objectives and system considerations - 3 Review of seismic assessment procedures - 4 Strength and deformation capacity of non-seismically detailed components - 5 Seismic retrofitting techniques - 6 Probabilistic concepts and methods - 7 Case studies
Publisher: fib Fédération internationale du béton
ISBN: 9782883940642
Category : Technology & Engineering
Languages : en
Pages : 322
Book Description
In most parts of the developed world, the building stock and the civil infrastructure are ageing and in constant need of maintenance, repair and upgrading. Moreover, in the light of our current knowledge and of modern codes, the majority of buildings stock and other types of structures in many parts of the world are substandard and deficient. This is especially so in earthquake-prone regions, as, even there, seismic design of structures is relatively recent. In those regions the major part of the seismic threat to human life and property comes from old buildings. Due to the infrastructure's increasing decay, frequently combined with the need for structural upgrading to meet more stringent design requirements (especially against seismic loads), structural retrofitting is becoming more and more important and receives today considerable emphasis throughout the world. In response to this need, a major part of the fib Model Code 2005, currently under development, is being devoted to structural conservation and maintenance. More importantly, in recognition of the importance of the seismic threat arising from existing substandard buildings, the first standards for structural upgrading to be promoted by the international engineering community and by regulatory authorities alike are for seismic rehabilitation of buildings. This is the case, for example, of Part 3: Strengthening and Repair of Buildings of Eurocode 8 (i. e. of the draft European Standard for earthquake-resistant design), and which is the only one among the current (2003) set of 58 Eurocodes attempting to address the problem of structural upgrading. It is also the case of the recent (2001) ASCE draft standard on Seismic evaluation of existing buildings and of the 1996 Law for promotion of seismic strengthening of existing reinforced concrete structures in Japan. As noted in Chapter 1 of this Bulletin, fib - as CEB and FIP did before - has placed considerable emphasis on assessment and rehabilitation of existing structures. The present Bulletin is a culmination of this effort in the special but very important field of seismic assessment and rehabilitation. It has been elaborated over a period of 4 years by Task Group 7.1 Assessment and retrofit of existing structures of fib Commission 7 Seismic design, a truly international team of experts, representing the expertise and experience of all the important seismic regions of the world. In the course of its work the team had six plenary two-day meetings: in January 1999 in Pavia, Italy; in August 1999 in Raleigh, North Carolina; in February 2000 in Queenstown, New Zealand; in July 2000 in Patras, Greece; in March 2001 in Lausanne, Switzerland; and in August 2001 in Seattle, Washington. In October 2002 the final draft of the Bulletin was presented to public during the 1st fib Congress in Osaka. It was also there that it was approved by fib Commission 7 Seismic Design. The contents is structured into main chapters as follows: 1 Introduction - 2 Performance objectives and system considerations - 3 Review of seismic assessment procedures - 4 Strength and deformation capacity of non-seismically detailed components - 5 Seismic retrofitting techniques - 6 Probabilistic concepts and methods - 7 Case studies
Earthquake Engineering
Author: Yousef Bozorgnia
Publisher: CRC Press
ISBN: 0203486242
Category : Technology & Engineering
Languages : en
Pages : 958
Book Description
This multi-contributor book provides comprehensive coverage of earthquake engineering problems, an overview of traditional methods, and the scientific background on recent developments. It discusses computer methods on structural analysis and provides access to the recent design methodologies and serves as a reference for both professionals and res
Publisher: CRC Press
ISBN: 0203486242
Category : Technology & Engineering
Languages : en
Pages : 958
Book Description
This multi-contributor book provides comprehensive coverage of earthquake engineering problems, an overview of traditional methods, and the scientific background on recent developments. It discusses computer methods on structural analysis and provides access to the recent design methodologies and serves as a reference for both professionals and res
NUREG/CR.
Author: U.S. Nuclear Regulatory Commission
Publisher:
ISBN:
Category : Nuclear energy
Languages : en
Pages : 316
Book Description
Publisher:
ISBN:
Category : Nuclear energy
Languages : en
Pages : 316
Book Description
Structural Dynamics
Author: Mario Paz
Publisher: Springer Science & Business Media
ISBN: 146157918X
Category : Science
Languages : en
Pages : 634
Book Description
solution, are provided for calculation of the responses to forces or motions exciting the structure. The new chapters in earthquake-resistant design of buildings describe the provisions of both the 1985 and 1988 versions of the UBC (Uniform Building Code) for the static lateral force method and for the dynamic lateral force method. Other revisions of the book include the presentation of the New mark beta method to obtain the time history response of dynamic systems, and the direct integration method in which the response is found assuming that the excitation function is linear for a specified time interval. A modifi cation of the dynamic condensation method, which has been developed re cently by the author for the reduction of eigenproblems, is presented in Chap ter 13. The proposed modification substantially reduces the numerical operation required in the implementation of the dynamic condensation method. The subjects in this new edition are organized in six parts. Part I deals with structures modeled as single degree-of-freedom systems. It introduces basic concepts and presents important methods for the solution of such dynamic systems. Part II introduces important concepts and methodology for multi degree-of-freedom systems through the use of structures modeled as shear buildings. Part III describes methods for the dynamic analysis of framed struc tures modeled as discrete systems with many degrees of freedom.
Publisher: Springer Science & Business Media
ISBN: 146157918X
Category : Science
Languages : en
Pages : 634
Book Description
solution, are provided for calculation of the responses to forces or motions exciting the structure. The new chapters in earthquake-resistant design of buildings describe the provisions of both the 1985 and 1988 versions of the UBC (Uniform Building Code) for the static lateral force method and for the dynamic lateral force method. Other revisions of the book include the presentation of the New mark beta method to obtain the time history response of dynamic systems, and the direct integration method in which the response is found assuming that the excitation function is linear for a specified time interval. A modifi cation of the dynamic condensation method, which has been developed re cently by the author for the reduction of eigenproblems, is presented in Chap ter 13. The proposed modification substantially reduces the numerical operation required in the implementation of the dynamic condensation method. The subjects in this new edition are organized in six parts. Part I deals with structures modeled as single degree-of-freedom systems. It introduces basic concepts and presents important methods for the solution of such dynamic systems. Part II introduces important concepts and methodology for multi degree-of-freedom systems through the use of structures modeled as shear buildings. Part III describes methods for the dynamic analysis of framed struc tures modeled as discrete systems with many degrees of freedom.