Author: Gregory M. Odegard
Publisher:
ISBN:
Category : Nanostructured materials
Languages : en
Pages : 20
Book Description
In this study, a technique has been proposed for developing constitive models for polymer composite systems reinforced with single-walled carbon nanotubes (SWNT). Since the polymer molecules are on the same size scale as the nanotubes, the interaction at the polymer/nanotube interface is highly dependent on the local molecular structure and bonding. At these small length scales, the lattice structures of the nanotube and polymer chains cannot be be considered continuous, and the bulk mechanical properties of the SWNT/polymer composites can no longer be determined through traditional micromechanical approaches that are formulated using continuum mechanics. It is proposed herein that the nanotube, the local polymer near the nanotube, and the nanotube/polymer interface can be modeled as an effective continuum fiber using an equivalent-continuum modeling method.
Constitutive Modeling of Nanotube-reinforced Polymer Composite Systems
Author: Gregory M. Odegard
Publisher:
ISBN:
Category : Nanostructured materials
Languages : en
Pages : 20
Book Description
In this study, a technique has been proposed for developing constitive models for polymer composite systems reinforced with single-walled carbon nanotubes (SWNT). Since the polymer molecules are on the same size scale as the nanotubes, the interaction at the polymer/nanotube interface is highly dependent on the local molecular structure and bonding. At these small length scales, the lattice structures of the nanotube and polymer chains cannot be be considered continuous, and the bulk mechanical properties of the SWNT/polymer composites can no longer be determined through traditional micromechanical approaches that are formulated using continuum mechanics. It is proposed herein that the nanotube, the local polymer near the nanotube, and the nanotube/polymer interface can be modeled as an effective continuum fiber using an equivalent-continuum modeling method.
Publisher:
ISBN:
Category : Nanostructured materials
Languages : en
Pages : 20
Book Description
In this study, a technique has been proposed for developing constitive models for polymer composite systems reinforced with single-walled carbon nanotubes (SWNT). Since the polymer molecules are on the same size scale as the nanotubes, the interaction at the polymer/nanotube interface is highly dependent on the local molecular structure and bonding. At these small length scales, the lattice structures of the nanotube and polymer chains cannot be be considered continuous, and the bulk mechanical properties of the SWNT/polymer composites can no longer be determined through traditional micromechanical approaches that are formulated using continuum mechanics. It is proposed herein that the nanotube, the local polymer near the nanotube, and the nanotube/polymer interface can be modeled as an effective continuum fiber using an equivalent-continuum modeling method.
Constitutive Modeling of Nanotube-Reinforced Polymer Composite Systems
Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
ISBN: 9781721268702
Category :
Languages : en
Pages : 32
Book Description
In this study, a technique has been proposed for developing constitutive models for polymer composite systems reinforced with single-walled carbon nanotubes (SWNT). Since the polymer molecules are on the same size scale as the nanotubes, the interaction at the polymer/nanotube interface is highly dependent on the local molecular structure and bonding. At these small length scales, the lattice structures of the nanotube and polymer chains cannot be considered continuous, and the bulk mechanical properties of the SWNT/polymer composites can no longer be determined through traditional micromechanical approaches that are formulated using continuum mechanics. It is proposed herein that the nanotube, the local polymer near the nanotube, and the nanotube/polymer interface can be modeled as an effective continuum fiber using an equivalent-continuum modeling method. The effective fiber retains the local molecular structure and bonding information and serves as a means for incorporating micromechanical analyses for the prediction of bulk mechanical properties of SWNT/polymer composites with various nanotube sizes and orientations. As an example, the proposed approach is used for the constitutive modeling of two SWNT/polyethylene composite systems, one with continuous and aligned SWNT and the other with discontinuous and randomly aligned nanotubes. Odegard, Gregory M. and Harik, Vasyl M. and Wise, Kristopher E. and Gates, Thomas S. Langley Research Center NASA/TM-2001-211044, L-18094, NAS 1.15:211044
Publisher: Createspace Independent Publishing Platform
ISBN: 9781721268702
Category :
Languages : en
Pages : 32
Book Description
In this study, a technique has been proposed for developing constitutive models for polymer composite systems reinforced with single-walled carbon nanotubes (SWNT). Since the polymer molecules are on the same size scale as the nanotubes, the interaction at the polymer/nanotube interface is highly dependent on the local molecular structure and bonding. At these small length scales, the lattice structures of the nanotube and polymer chains cannot be considered continuous, and the bulk mechanical properties of the SWNT/polymer composites can no longer be determined through traditional micromechanical approaches that are formulated using continuum mechanics. It is proposed herein that the nanotube, the local polymer near the nanotube, and the nanotube/polymer interface can be modeled as an effective continuum fiber using an equivalent-continuum modeling method. The effective fiber retains the local molecular structure and bonding information and serves as a means for incorporating micromechanical analyses for the prediction of bulk mechanical properties of SWNT/polymer composites with various nanotube sizes and orientations. As an example, the proposed approach is used for the constitutive modeling of two SWNT/polyethylene composite systems, one with continuous and aligned SWNT and the other with discontinuous and randomly aligned nanotubes. Odegard, Gregory M. and Harik, Vasyl M. and Wise, Kristopher E. and Gates, Thomas S. Langley Research Center NASA/TM-2001-211044, L-18094, NAS 1.15:211044
Constitutive Modeling of Nanotube-Reinforced Polymer Composites
Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
ISBN: 9781720451501
Category :
Languages : en
Pages : 36
Book Description
In this study, a technique is presented for developing constitutive models for polymer composite systems reinforced with single-walled carbon nanotubes (SWNT). Because the polymer molecules are on the same size scale as the nanotubes, the interaction at the polymer/nanotube interface is highly dependent on the local molecular structure and bonding. At these small length scales, the lattice structures of the nanotube and polymer chains cannot be considered continuous, and the bulk mechanical properties can no longer be determined through traditional micromechanical approaches that are formulated by using continuum mechanics. It is proposed herein that the nanotube, the local polymer near the nanotube, and the nanotube/polymer interface can be modeled as an effective continuum fiber using an equivalent-continuum modeling method. The effective fiber serves as a means for incorporating micromechanical analyses for the prediction of bulk mechanical properties of SWNT/polymer composites with various nanotube lengths, concentrations, and orientations. As an example, the proposed approach is used for the constitutive modeling of two SWNT/polyimide composite systems.Odegard, G. M. and Gates, T. S. and Wise, K. E. and Park, C. and Siochi, E. J. and Bushnell, Dennis M. (Technical Monitor)Langley Research CenterCARBON NANOTUBES; POLYMERS; MOLECULAR STRUCTURE; BONDING; COMPOSITE STRUCTURES; CONTINUUM MODELING; MATHEMATICAL MODELS; MECHANICAL PROPERTIES; MOLECULAR CHAINS; POLYIMIDES
Publisher: Createspace Independent Publishing Platform
ISBN: 9781720451501
Category :
Languages : en
Pages : 36
Book Description
In this study, a technique is presented for developing constitutive models for polymer composite systems reinforced with single-walled carbon nanotubes (SWNT). Because the polymer molecules are on the same size scale as the nanotubes, the interaction at the polymer/nanotube interface is highly dependent on the local molecular structure and bonding. At these small length scales, the lattice structures of the nanotube and polymer chains cannot be considered continuous, and the bulk mechanical properties can no longer be determined through traditional micromechanical approaches that are formulated by using continuum mechanics. It is proposed herein that the nanotube, the local polymer near the nanotube, and the nanotube/polymer interface can be modeled as an effective continuum fiber using an equivalent-continuum modeling method. The effective fiber serves as a means for incorporating micromechanical analyses for the prediction of bulk mechanical properties of SWNT/polymer composites with various nanotube lengths, concentrations, and orientations. As an example, the proposed approach is used for the constitutive modeling of two SWNT/polyimide composite systems.Odegard, G. M. and Gates, T. S. and Wise, K. E. and Park, C. and Siochi, E. J. and Bushnell, Dennis M. (Technical Monitor)Langley Research CenterCARBON NANOTUBES; POLYMERS; MOLECULAR STRUCTURE; BONDING; COMPOSITE STRUCTURES; CONTINUUM MODELING; MATHEMATICAL MODELS; MECHANICAL PROPERTIES; MOLECULAR CHAINS; POLYIMIDES
Constitutive Modeling of Nanotube-Reinforced Polymer Composites
Author: G. M. Odegard
Publisher:
ISBN:
Category :
Languages : en
Pages : 38
Book Description
In this study, a technique is presented for developing constitutive models for polymer composite systems reinforced with single-walled carbon nanotubes (SWNT). Because the polymer molecules are on the same size scale as the nanotubes, the interaction at the polymer/nanotube interface is highly dependent on the local molecular structure and bonding. At these small length scales, the lattice structures of the nanotube and polymer chains cannot be considered continuous, and the bulk mechanical properties can no longer be determined through the traditional micromechanical approaches that are formulated by using continuum mechanics. It is proposed herein that the nanotube, the local polymer near the nanotube, and the nanotube/polymer interface can be modeled as an effective continuum fiber using an equivalent-continuum modeling method. The micromechanical analyses for the prediction of bulk mechanical properties of SWNT/polymer composites with various nanotube lengths, concentrations, and orientations. As an example, the proposed approach is used for the constitutive modeling of two SWNT/polyimide composite systems.
Publisher:
ISBN:
Category :
Languages : en
Pages : 38
Book Description
In this study, a technique is presented for developing constitutive models for polymer composite systems reinforced with single-walled carbon nanotubes (SWNT). Because the polymer molecules are on the same size scale as the nanotubes, the interaction at the polymer/nanotube interface is highly dependent on the local molecular structure and bonding. At these small length scales, the lattice structures of the nanotube and polymer chains cannot be considered continuous, and the bulk mechanical properties can no longer be determined through the traditional micromechanical approaches that are formulated by using continuum mechanics. It is proposed herein that the nanotube, the local polymer near the nanotube, and the nanotube/polymer interface can be modeled as an effective continuum fiber using an equivalent-continuum modeling method. The micromechanical analyses for the prediction of bulk mechanical properties of SWNT/polymer composites with various nanotube lengths, concentrations, and orientations. As an example, the proposed approach is used for the constitutive modeling of two SWNT/polyimide composite systems.
Carbon Nanotube-Reinforced Polymers
Author: Roham Rafiee
Publisher: Elsevier
ISBN: 0323482228
Category : Science
Languages : en
Pages : 588
Book Description
Carbon Nanotube-Reinforced Polymers: From Nanoscale to Macroscale addresses the advances in nanotechnology that have led to the development of a new class of composite materials known as CNT-reinforced polymers. The low density and high aspect ratio, together with their exceptional mechanical, electrical and thermal properties, render carbon nanotubes as a good reinforcing agent for composites. In addition, these simulation and modeling techniques play a significant role in characterizing their properties and understanding their mechanical behavior, and are thus discussed and demonstrated in this comprehensive book that presents the state-of-the-art research in the field of modeling, characterization and processing. The book separates the theoretical studies on the mechanical properties of CNTs and their composites into atomistic modeling and continuum mechanics-based approaches, including both analytical and numerical ones, along with multi-scale modeling techniques. Different efforts have been done in this field to address the mechanical behavior of isolated CNTs and their composites by numerous researchers, signaling that this area of study is ongoing. - Explains modeling approaches to carbon nanotubes, together with their application, strengths and limitations - Outlines the properties of different carbon nanotube-based composites, exploring how they are used in the mechanical and structural components - Analyzes the behavior of carbon nanotube-based composites in different conditions
Publisher: Elsevier
ISBN: 0323482228
Category : Science
Languages : en
Pages : 588
Book Description
Carbon Nanotube-Reinforced Polymers: From Nanoscale to Macroscale addresses the advances in nanotechnology that have led to the development of a new class of composite materials known as CNT-reinforced polymers. The low density and high aspect ratio, together with their exceptional mechanical, electrical and thermal properties, render carbon nanotubes as a good reinforcing agent for composites. In addition, these simulation and modeling techniques play a significant role in characterizing their properties and understanding their mechanical behavior, and are thus discussed and demonstrated in this comprehensive book that presents the state-of-the-art research in the field of modeling, characterization and processing. The book separates the theoretical studies on the mechanical properties of CNTs and their composites into atomistic modeling and continuum mechanics-based approaches, including both analytical and numerical ones, along with multi-scale modeling techniques. Different efforts have been done in this field to address the mechanical behavior of isolated CNTs and their composites by numerous researchers, signaling that this area of study is ongoing. - Explains modeling approaches to carbon nanotubes, together with their application, strengths and limitations - Outlines the properties of different carbon nanotube-based composites, exploring how they are used in the mechanical and structural components - Analyzes the behavior of carbon nanotube-based composites in different conditions
Carbon Nanotube-polymer Composites
Author: Dimitrios Tasis
Publisher: Royal Society of Chemistry
ISBN: 1849735689
Category : Science
Languages : en
Pages : 293
Book Description
The purpose of this book is to summarize the basic chemical aspects for obtaining multifunctional carbon nanotube-based polymer composites, but also to highlight some of the most remarkable advances that occurred in the field during the last recent years.
Publisher: Royal Society of Chemistry
ISBN: 1849735689
Category : Science
Languages : en
Pages : 293
Book Description
The purpose of this book is to summarize the basic chemical aspects for obtaining multifunctional carbon nanotube-based polymer composites, but also to highlight some of the most remarkable advances that occurred in the field during the last recent years.
ICASE Semiannual Report
Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 64
Book Description
This report summarizes research conducted at ICASE in applied mathematics, computer science, fluid mechanics, and structures and material sciences during the period October 1, 2000 through March 31, 2001.
Publisher:
ISBN:
Category :
Languages : en
Pages : 64
Book Description
This report summarizes research conducted at ICASE in applied mathematics, computer science, fluid mechanics, and structures and material sciences during the period October 1, 2000 through March 31, 2001.
纳米线和纳米带——材料、性能和器件卷1:金属和特种纳米线
Author:
Publisher: 清华大学出版社有限公司
ISBN: 9787302082149
Category : Microtechnology
Languages : en
Pages : 492
Book Description
Publisher: 清华大学出版社有限公司
ISBN: 9787302082149
Category : Microtechnology
Languages : en
Pages : 492
Book Description
Influence of Molecular Weight on the Mechanical Performance of a Thermoplastic Glassy Polyimide
Author: Lee M. Nicholson
Publisher:
ISBN:
Category : Molecular weights
Languages : en
Pages : 36
Book Description
Publisher:
ISBN:
Category : Molecular weights
Languages : en
Pages : 36
Book Description
Clay-containing Polymeric Nanocomposites
Author: L. A. Utracki
Publisher: iSmithers Rapra Publishing
ISBN: 9781859574829
Category : Technology & Engineering
Languages : en
Pages : 382
Book Description
This is a very comprehensive book and represents the forefront of the technology of Clay-Containing Polymeric Nanocomposites.
Publisher: iSmithers Rapra Publishing
ISBN: 9781859574829
Category : Technology & Engineering
Languages : en
Pages : 382
Book Description
This is a very comprehensive book and represents the forefront of the technology of Clay-Containing Polymeric Nanocomposites.