Author: Malte Henkel
Publisher: Springer Science & Business Media
ISBN: 3662039370
Category : Science
Languages : en
Pages : 433
Book Description
Critical phenomena arise in a wide variety of physical systems. Classi cal examples are the liquid-vapour critical point or the paramagnetic ferromagnetic transition. Further examples include multicomponent fluids and alloys, superfluids, superconductors, polymers and fully developed tur bulence and may even extend to the quark-gluon plasma and the early uni verse as a whole. Early theoretical investigators tried to reduce the problem to a very small number of degrees of freedom, such as the van der Waals equation and mean field approximations, culminating in Landau's general theory of critical phenomena. Nowadays, it is understood that the common ground for all these phenomena lies in the presence of strong fluctuations of infinitely many coupled variables. This was made explicit first through the exact solution of the two-dimensional Ising model by Onsager. Systematic subsequent developments have been leading to the scaling theories of critical phenomena and the renormalization group which allow a precise description of the close neighborhood of the critical point, often in good agreement with experiments. In contrast to the general understanding a century ago, the presence of fluctuations on all length scales at a critical point is emphasized today. This can be briefly summarized by saying that at a critical point a system is scale invariant. In addition, conformal invaTiance permits also a non-uniform, local rescal ing, provided only that angles remain unchanged.
Conformal Invariance and Critical Phenomena
Author: Malte Henkel
Publisher: Springer Science & Business Media
ISBN: 3662039370
Category : Science
Languages : en
Pages : 433
Book Description
Critical phenomena arise in a wide variety of physical systems. Classi cal examples are the liquid-vapour critical point or the paramagnetic ferromagnetic transition. Further examples include multicomponent fluids and alloys, superfluids, superconductors, polymers and fully developed tur bulence and may even extend to the quark-gluon plasma and the early uni verse as a whole. Early theoretical investigators tried to reduce the problem to a very small number of degrees of freedom, such as the van der Waals equation and mean field approximations, culminating in Landau's general theory of critical phenomena. Nowadays, it is understood that the common ground for all these phenomena lies in the presence of strong fluctuations of infinitely many coupled variables. This was made explicit first through the exact solution of the two-dimensional Ising model by Onsager. Systematic subsequent developments have been leading to the scaling theories of critical phenomena and the renormalization group which allow a precise description of the close neighborhood of the critical point, often in good agreement with experiments. In contrast to the general understanding a century ago, the presence of fluctuations on all length scales at a critical point is emphasized today. This can be briefly summarized by saying that at a critical point a system is scale invariant. In addition, conformal invaTiance permits also a non-uniform, local rescal ing, provided only that angles remain unchanged.
Publisher: Springer Science & Business Media
ISBN: 3662039370
Category : Science
Languages : en
Pages : 433
Book Description
Critical phenomena arise in a wide variety of physical systems. Classi cal examples are the liquid-vapour critical point or the paramagnetic ferromagnetic transition. Further examples include multicomponent fluids and alloys, superfluids, superconductors, polymers and fully developed tur bulence and may even extend to the quark-gluon plasma and the early uni verse as a whole. Early theoretical investigators tried to reduce the problem to a very small number of degrees of freedom, such as the van der Waals equation and mean field approximations, culminating in Landau's general theory of critical phenomena. Nowadays, it is understood that the common ground for all these phenomena lies in the presence of strong fluctuations of infinitely many coupled variables. This was made explicit first through the exact solution of the two-dimensional Ising model by Onsager. Systematic subsequent developments have been leading to the scaling theories of critical phenomena and the renormalization group which allow a precise description of the close neighborhood of the critical point, often in good agreement with experiments. In contrast to the general understanding a century ago, the presence of fluctuations on all length scales at a critical point is emphasized today. This can be briefly summarized by saying that at a critical point a system is scale invariant. In addition, conformal invaTiance permits also a non-uniform, local rescal ing, provided only that angles remain unchanged.
Introduction to Conformal Invariance and Its Applications to Critical Phenomena
Author: Philippe Christe
Publisher: Springer Science & Business Media
ISBN: 3540565043
Category : Science
Languages : en
Pages : 276
Book Description
The history of critical phenomena goes back to the year 1869 when Andrews discovered the critical point of carbon dioxide, located at about 31°C and 73 atmospheres pressure. In the neighborhood ofthis point the carbon dioxide was observed to become opalescent, that is, light is strongly scattered. This is nowadays interpreted as comingfrom the strong fluctuations of the system close to the critical point. Subsequently, a wide varietyofphysicalsystems were realized to display critical points as well. Ofparticular importance was the observation of a critical point in ferromagnetic iron by Curie. Further examples include multicomponent fluids and alloys, superfluids, superconductors, polymers and may even extend to the quark-gluon plasmaand the early universe as a whole. Early theoretical investigationstried to reduce the problem to a very small number of degrees of freedom, such as the van der Waals equation and mean field approximations and culminating in Landau's general theory of critical phenomena. In a dramatic development, Onsager's exact solutionofthe two-dimensional Ising model made clear the important role of the critical fluctuations. Their role was taken into account in the subsequent developments leading to the scaling theories of critical phenomena and the renormalization group. These developements have achieved a precise description of the close neighborhood of the critical point and results are often in good agreement with experiments. In contrast to the general understanding a century ago, the presence of fluctuations on all length scales at a critical point is today emphasized.
Publisher: Springer Science & Business Media
ISBN: 3540565043
Category : Science
Languages : en
Pages : 276
Book Description
The history of critical phenomena goes back to the year 1869 when Andrews discovered the critical point of carbon dioxide, located at about 31°C and 73 atmospheres pressure. In the neighborhood ofthis point the carbon dioxide was observed to become opalescent, that is, light is strongly scattered. This is nowadays interpreted as comingfrom the strong fluctuations of the system close to the critical point. Subsequently, a wide varietyofphysicalsystems were realized to display critical points as well. Ofparticular importance was the observation of a critical point in ferromagnetic iron by Curie. Further examples include multicomponent fluids and alloys, superfluids, superconductors, polymers and may even extend to the quark-gluon plasmaand the early universe as a whole. Early theoretical investigationstried to reduce the problem to a very small number of degrees of freedom, such as the van der Waals equation and mean field approximations and culminating in Landau's general theory of critical phenomena. In a dramatic development, Onsager's exact solutionofthe two-dimensional Ising model made clear the important role of the critical fluctuations. Their role was taken into account in the subsequent developments leading to the scaling theories of critical phenomena and the renormalization group. These developements have achieved a precise description of the close neighborhood of the critical point and results are often in good agreement with experiments. In contrast to the general understanding a century ago, the presence of fluctuations on all length scales at a critical point is today emphasized.
Conformal Invariance And Applications To Statistical Mechanics
Author: C Itzykson
Publisher: World Scientific
ISBN: 9814507598
Category :
Languages : en
Pages : 992
Book Description
This volume contains Introductory Notes and major reprints on conformal field theory and its applications to 2-dimensional statistical mechanics of critical phenomena. The subject relates to many different areas in contemporary physics and mathematics, including string theory, integrable systems, representations of infinite Lie algebras and automorphic functions.
Publisher: World Scientific
ISBN: 9814507598
Category :
Languages : en
Pages : 992
Book Description
This volume contains Introductory Notes and major reprints on conformal field theory and its applications to 2-dimensional statistical mechanics of critical phenomena. The subject relates to many different areas in contemporary physics and mathematics, including string theory, integrable systems, representations of infinite Lie algebras and automorphic functions.
Conformal Invariance and String Theory
Author: Petre Dita
Publisher: Elsevier
ISBN: 0323145574
Category : Science
Languages : en
Pages : 575
Book Description
Conformal Invariance and String Theory is an account of the series of lectures held in Summer School regarding Conformal Invariance and String Theory in September 1987. The purpose of the lectures is to present the important problems and results in these two areas of theoretical physics. The text is divided into two major parts. Part I deals with implications of conformal invariance in studying two-dimensional systems. Part II meanwhile presents lectures regarding the advances in string theory and other related topics.Also included in the text is a part dedicated to the topic of determinants. This topic is discussed in two parts; the first focuses on the determinants in the finite dimensional case, while the second talks about Fredholm determinants. The book is a helpful source of reference to students and researchers in the field of physics, specifically quantum and theoretical.
Publisher: Elsevier
ISBN: 0323145574
Category : Science
Languages : en
Pages : 575
Book Description
Conformal Invariance and String Theory is an account of the series of lectures held in Summer School regarding Conformal Invariance and String Theory in September 1987. The purpose of the lectures is to present the important problems and results in these two areas of theoretical physics. The text is divided into two major parts. Part I deals with implications of conformal invariance in studying two-dimensional systems. Part II meanwhile presents lectures regarding the advances in string theory and other related topics.Also included in the text is a part dedicated to the topic of determinants. This topic is discussed in two parts; the first focuses on the determinants in the finite dimensional case, while the second talks about Fredholm determinants. The book is a helpful source of reference to students and researchers in the field of physics, specifically quantum and theoretical.
Conformal Invariance in Supergravity
Author: Eric Arnold Bergshoeff
Publisher:
ISBN:
Category :
Languages : en
Pages : 180
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 180
Book Description
Conformal Field Theory
Author: Philippe Francesco
Publisher: Springer Science & Business Media
ISBN: 1461222567
Category : Science
Languages : en
Pages : 908
Book Description
Filling an important gap in the literature, this comprehensive text develops conformal field theory from first principles. The treatment is self-contained, pedagogical, and exhaustive, and includes a great deal of background material on quantum field theory, statistical mechanics, Lie algebras and affine Lie algebras. The many exercises, with a wide spectrum of difficulty and subjects, complement and in many cases extend the text. The text is thus not only an excellent tool for classroom teaching but also for individual study. Intended primarily for graduate students and researchers in theoretical high-energy physics, mathematical physics, condensed matter theory, statistical physics, the book will also be of interest in other areas of theoretical physics and mathematics. It will prepare the reader for original research in this very active field of theoretical and mathematical physics.
Publisher: Springer Science & Business Media
ISBN: 1461222567
Category : Science
Languages : en
Pages : 908
Book Description
Filling an important gap in the literature, this comprehensive text develops conformal field theory from first principles. The treatment is self-contained, pedagogical, and exhaustive, and includes a great deal of background material on quantum field theory, statistical mechanics, Lie algebras and affine Lie algebras. The many exercises, with a wide spectrum of difficulty and subjects, complement and in many cases extend the text. The text is thus not only an excellent tool for classroom teaching but also for individual study. Intended primarily for graduate students and researchers in theoretical high-energy physics, mathematical physics, condensed matter theory, statistical physics, the book will also be of interest in other areas of theoretical physics and mathematics. It will prepare the reader for original research in this very active field of theoretical and mathematical physics.
Symmetries of Maxwell’s Equations
Author: W.I. Fushchich
Publisher: Springer Science & Business Media
ISBN: 9789027723208
Category : Science
Languages : en
Pages : 236
Book Description
Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. Then one day, that they can't see the problem. perhaps you will find the fina\ question. G. K. Chesterton. The Scandal of Father 'The Hermit Oad in Crane Feathers' in R. Brown 'The point of a Pin'. van Gu\ik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics", "CFD", "completely integrable systems", "chaos, synergetics and large-scale order", which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics.
Publisher: Springer Science & Business Media
ISBN: 9789027723208
Category : Science
Languages : en
Pages : 236
Book Description
Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. Then one day, that they can't see the problem. perhaps you will find the fina\ question. G. K. Chesterton. The Scandal of Father 'The Hermit Oad in Crane Feathers' in R. Brown 'The point of a Pin'. van Gu\ik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics", "CFD", "completely integrable systems", "chaos, synergetics and large-scale order", which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics.
Classical Charged Particles
Author: F. Rohrlich
Publisher: World Scientific
ISBN: 9812700048
Category : Science
Languages : en
Pages : 323
Book Description
Originally written in 1964, this famous text is a study of the classical theory of charged particles. Many applications treat electrons as point particles. At the same time, there is a widespread belief that the theory of point particles is beset with various difficulties such as an infinite electrostatic self-energy, a rather doubtful equation of motion which admits physically meaningless solutions, violation of causality and others. The classical theory of charged particles has been largely ignored and has been left in an incomplete state since the discovery of quantum mechanics. Despite the great efforts of men such as Lorentz, Abraham, Poincar, and Dirac, it is usually regarded as a ?lost cause?. But thanks to progress made just a few years ago, the author is able to resolve the various problems and to complete this unfinished theory successfully.
Publisher: World Scientific
ISBN: 9812700048
Category : Science
Languages : en
Pages : 323
Book Description
Originally written in 1964, this famous text is a study of the classical theory of charged particles. Many applications treat electrons as point particles. At the same time, there is a widespread belief that the theory of point particles is beset with various difficulties such as an infinite electrostatic self-energy, a rather doubtful equation of motion which admits physically meaningless solutions, violation of causality and others. The classical theory of charged particles has been largely ignored and has been left in an incomplete state since the discovery of quantum mechanics. Despite the great efforts of men such as Lorentz, Abraham, Poincar, and Dirac, it is usually regarded as a ?lost cause?. But thanks to progress made just a few years ago, the author is able to resolve the various problems and to complete this unfinished theory successfully.
Lattice Models and Conformal Field Theory
Author: Franck Gabriel
Publisher: American Mathematical Society, Courant Institute of Mathematical Sciences at New York University
ISBN: 1470456184
Category : Mathematics
Languages : en
Pages : 219
Book Description
This book introduces the mathematical ideas connecting Statistical Mechanics and Conformal Field Theory (CFT). Building advanced structures on top of more elementary ones, the authors map out a well-posed road from simple lattice models to CFTs. Structured in two parts, the book begins by exploring several two-dimensional lattice models, their phase transitions, and their conjectural connection with CFT. Through these lattice models and their local fields, the fundamental ideas and results of two-dimensional CFTs emerge, with a special emphasis on the Unitary Minimal Models of CFT. Delving into the delicate ideas that lead to the classification of these CFTs, the authors discuss the assumptions on the lattice models whose scaling limits are described by CFTs. This produces a probabilistic rather than an axiomatic or algebraic definition of CFTs. Suitable for graduate students and researchers in mathematics and physics, Lattice Models and Conformal Field Theory introduces the ideas at the core of Statistical Field Theory. Assuming only undergraduate probability and complex analysis, the authors carefully motivate every argument and assumption made. Concrete examples and exercises allow readers to check their progress throughout.
Publisher: American Mathematical Society, Courant Institute of Mathematical Sciences at New York University
ISBN: 1470456184
Category : Mathematics
Languages : en
Pages : 219
Book Description
This book introduces the mathematical ideas connecting Statistical Mechanics and Conformal Field Theory (CFT). Building advanced structures on top of more elementary ones, the authors map out a well-posed road from simple lattice models to CFTs. Structured in two parts, the book begins by exploring several two-dimensional lattice models, their phase transitions, and their conjectural connection with CFT. Through these lattice models and their local fields, the fundamental ideas and results of two-dimensional CFTs emerge, with a special emphasis on the Unitary Minimal Models of CFT. Delving into the delicate ideas that lead to the classification of these CFTs, the authors discuss the assumptions on the lattice models whose scaling limits are described by CFTs. This produces a probabilistic rather than an axiomatic or algebraic definition of CFTs. Suitable for graduate students and researchers in mathematics and physics, Lattice Models and Conformal Field Theory introduces the ideas at the core of Statistical Field Theory. Assuming only undergraduate probability and complex analysis, the authors carefully motivate every argument and assumption made. Concrete examples and exercises allow readers to check their progress throughout.
Vertex Operators in Mathematics and Physics
Author: J. Lepowsky
Publisher: Springer Science & Business Media
ISBN: 146139550X
Category : Science
Languages : en
Pages : 484
Book Description
James Lepowsky t The search for symmetry in nature has for a long time provided representation theory with perhaps its chief motivation. According to the standard approach of Lie theory, one looks for infinitesimal symmetry -- Lie algebras of operators or concrete realizations of abstract Lie algebras. A central theme in this volume is the construction of affine Lie algebras using formal differential operators called vertex operators, which originally appeared in the dual-string theory. Since the precise description of vertex operators, in both mathematical and physical settings, requires a fair amount of notation, we do not attempt it in this introduction. Instead we refer the reader to the papers of Mandelstam, Goddard-Olive, Lepowsky-Wilson and Frenkel-Lepowsky-Meurman. We have tried to maintain consistency of terminology and to some extent notation in the articles herein. To help the reader we shall review some of the terminology. We also thought it might be useful to supplement an earlier fairly detailed exposition of ours [37] with a brief historical account of vertex operators in mathematics and their connection with affine algebras. Since we were involved in the development of the subject, the reader should be advised that what follows reflects our own understanding. For another view, see [29].1 t Partially supported by the National Science Foundation through the Mathematical Sciences Research Institute and NSF Grant MCS 83-01664. 1 We would like to thank Igor Frenkel for his valuable comments on the first draft of this introduction.
Publisher: Springer Science & Business Media
ISBN: 146139550X
Category : Science
Languages : en
Pages : 484
Book Description
James Lepowsky t The search for symmetry in nature has for a long time provided representation theory with perhaps its chief motivation. According to the standard approach of Lie theory, one looks for infinitesimal symmetry -- Lie algebras of operators or concrete realizations of abstract Lie algebras. A central theme in this volume is the construction of affine Lie algebras using formal differential operators called vertex operators, which originally appeared in the dual-string theory. Since the precise description of vertex operators, in both mathematical and physical settings, requires a fair amount of notation, we do not attempt it in this introduction. Instead we refer the reader to the papers of Mandelstam, Goddard-Olive, Lepowsky-Wilson and Frenkel-Lepowsky-Meurman. We have tried to maintain consistency of terminology and to some extent notation in the articles herein. To help the reader we shall review some of the terminology. We also thought it might be useful to supplement an earlier fairly detailed exposition of ours [37] with a brief historical account of vertex operators in mathematics and their connection with affine algebras. Since we were involved in the development of the subject, the reader should be advised that what follows reflects our own understanding. For another view, see [29].1 t Partially supported by the National Science Foundation through the Mathematical Sciences Research Institute and NSF Grant MCS 83-01664. 1 We would like to thank Igor Frenkel for his valuable comments on the first draft of this introduction.