Conceptual Design of Wave Energy Converters

Conceptual Design of Wave Energy Converters PDF Author: Kush Bubbar
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Despite presenting a vast opportunity as a renewable energy resource, ocean wave energy has yet to gain commercial success due to the design space being divergent. To facilitate convergence, this dissertation has proposed a method using the mechanical circuit framework to transform a linear representation of any wave energy converter into an equivalent single body absorber, or canonical form, through the systematic application of Thévenin's theorem. Once the canonical form for a WEC has been established, criteria originally derived to maximize power capture in single body absorbers is then applied. Through this process, a master-slave relationship was introduced that relates the geometry and PTO parameters of a wave energy converter device to one another and presents a new method to establish the best possible power capture in analytical form based on dynamic response. This method has been applied to reprove the power capture limits derived by Falnes and Korde for their point absorber devices, and proceeds to introduce a new analytical power capture limit for the self-reacting point absorber architecture, while concurrently establishing design criteria required to achieve the limit. A new technology, the inerter, has been introduced as a means to implement the design criteria. The method has been further developed to establish the generic optimal phase control conditions for complex WEC architectures. In doing so, generic equations have been derived that describe how a geometry control feature set is used to satisfy the required optimal phase criteria. Finally, this dissertation has demonstrated that applying this method with a generic reactive force source enacting the geometry control establishes analytical optimal conditions on the force source to achieve optimal power capture. This work revealed how the analytical equations defining the optimal force source reactance derived in this dissertation for self-reacting point absorbers represents a tangible design constraint prior to specifying how that constraint must be satisfied. As the force source is generic and conceptual, substitution with a physical embodiment must adhere to this constraint thus, steering technology innovation.

Conceptual Design of Wave Energy Converters

Conceptual Design of Wave Energy Converters PDF Author: Kush Bubbar
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Despite presenting a vast opportunity as a renewable energy resource, ocean wave energy has yet to gain commercial success due to the design space being divergent. To facilitate convergence, this dissertation has proposed a method using the mechanical circuit framework to transform a linear representation of any wave energy converter into an equivalent single body absorber, or canonical form, through the systematic application of Thévenin's theorem. Once the canonical form for a WEC has been established, criteria originally derived to maximize power capture in single body absorbers is then applied. Through this process, a master-slave relationship was introduced that relates the geometry and PTO parameters of a wave energy converter device to one another and presents a new method to establish the best possible power capture in analytical form based on dynamic response. This method has been applied to reprove the power capture limits derived by Falnes and Korde for their point absorber devices, and proceeds to introduce a new analytical power capture limit for the self-reacting point absorber architecture, while concurrently establishing design criteria required to achieve the limit. A new technology, the inerter, has been introduced as a means to implement the design criteria. The method has been further developed to establish the generic optimal phase control conditions for complex WEC architectures. In doing so, generic equations have been derived that describe how a geometry control feature set is used to satisfy the required optimal phase criteria. Finally, this dissertation has demonstrated that applying this method with a generic reactive force source enacting the geometry control establishes analytical optimal conditions on the force source to achieve optimal power capture. This work revealed how the analytical equations defining the optimal force source reactance derived in this dissertation for self-reacting point absorbers represents a tangible design constraint prior to specifying how that constraint must be satisfied. As the force source is generic and conceptual, substitution with a physical embodiment must adhere to this constraint thus, steering technology innovation.

Modelling and Optimization of Wave Energy Converters

Modelling and Optimization of Wave Energy Converters PDF Author: Dezhi Ning
Publisher: CRC Press
ISBN: 1000629112
Category : Technology & Engineering
Languages : en
Pages : 384

Get Book Here

Book Description
Wave energy offers a promising renewable energy source, however, technologies converting wave energy into useful electricity face many design challenges. This guide presents numerical modelling and optimization methods for the development of wave energy converter technologies, from principles to applications. It covers the development status and perspectives of wave energy converter systems; the fundamental theories on wave power absorption; the modern wave energy converter concepts including oscillating bodies in single and multiple degree of freedom and oscillating water column technologies; and the relatively hitherto unexplored topic of wave energy harvesting farms. It can be used as a specialist student textbook as well as a reference book for the design of wave energy harvesting systems, across a broad range of disciplines, including renewable energy, marine engineering, infrastructure engineering, hydrodynamics, ocean science, and mechatronics engineering. The Open Access version of this book, available at www.routledge.com has been made available under a Creative Commons Attribution-Non Commercial-No Derivatives 4.0 license.

Handbook of Ocean Wave Energy

Handbook of Ocean Wave Energy PDF Author: Arthur Pecher
Publisher: Springer
ISBN: 331939889X
Category : Technology & Engineering
Languages : en
Pages : 305

Get Book Here

Book Description
This book is open access under a CC BY-NC 2.5 license. This book offers a concise, practice-oriented reference-guide to the field of ocean wave energy. The ten chapters highlight the key rules of thumb, address all the main technical engineering aspects and describe in detail all the key aspects to be considered in the techno-economic assessment of wave energy converters. Written in an easy-to-understand style, the book answers questions relevant to readers of different backgrounds, from developers, private and public investors, to students and researchers. It is thereby a valuable resource for both newcomers and experienced practitioners in the wave energy sector.

Wave Energy Conversion

Wave Energy Conversion PDF Author: John Brooke
Publisher: Elsevier
ISBN: 0080543707
Category : Technology & Engineering
Languages : en
Pages : 205

Get Book Here

Book Description
Wave energy, together with other renewable energy resources is expected to provide a small but significant proportion of future energy requirements without adding to pollution and global warming. This practical and concise reference considers alternative application methods, explains the concepts behind wave energy conversion and investigates wave power activities across the globe. Explores the potential of using the power generated by waves as a natural energy resource Considers the power transfer systems needed to do this, and looks at the environmental impacts

Conceptual Design for Engineers

Conceptual Design for Engineers PDF Author: Michael Joseph French
Publisher: Springer Science & Business Media
ISBN: 1447136276
Category : Technology & Engineering
Languages : en
Pages : 260

Get Book Here

Book Description
Although first published nearly thirty years ago, this book remains up-to-date, intellectually stimulating and realistic. Unlike most texts in the field, it relates design closely to the science and mathematics that are students' chief concern, and shows their relevance. It shows how to make simple but illuminating calculations, and how to achieve the insight and the invention that often result from them. Covering design principles in depth, this is, and remains, an original book: although some of the ideas which were novel in 1971 are now widely accepted, others remain new.

Marine Tidal and Wave Energy Converters

Marine Tidal and Wave Energy Converters PDF Author: Mohamed Benbouzid
Publisher: MDPI
ISBN: 3039282786
Category : Technology & Engineering
Languages : en
Pages : 174

Get Book Here

Book Description
The worldwide potential of electric power generation from marine tidal currents, waves, or offshore winds is enormous. The high load factor resulting from the fluid properties and the predictable resource characteristics make tidal and wave energy resources attractive and advantageous for power generation and advantageous when compared to other renewable energies. The technologies are just beginning to reach technical and economic viability to make them potential commercial power sources in the near future. While only a few small projects currently exist, the technology is advancing rapidly and has huge potential for generating bulk power. Moreover, international treaties related to climate control and dwindling fossil fuel resources have encouraged us to harness energy sustainably from such marine renewable sources. Several demonstrative projects have been scheduled to capture tidal and wave energies. A number of these projects have now reached a relatively mature stage and are close to completion. However, very little is known to the academic world about these technologies beyond the basics of their energy conversion principles. While research emphasis is more towards hydrodynamics and turbine design, very limited activities are witnessed in power conversion interface, control, and power quality aspects. Regarding this emerging and promising area of research, this book aims to present recent results, serving to promote successful marine renewable energies integration to the grid or to standalone microgrids.

Wave Energy Devices

Wave Energy Devices PDF Author: Srinivasan Chandrasekaran
Publisher: CRC Press
ISBN: 1000571483
Category : Science
Languages : en
Pages : 273

Get Book Here

Book Description
Designing offshore wave energy converter (WEC) devices requires a thorough understanding of many aspects of science and engineering, namely, wave hydrodynamics, wave-WEC interactions, mechanical design, analysis tools, and conducting experiments. This book provides the tools for understanding these complex systems and addresses the basic concepts of WECs through detailed analysis and design. A few devices developed and experimentally investigated are discussed in detail, some of which are considered highly novel and still in the preliminary stages of study in the existing literature. FEATURES Offers numerous detailed design methods and practical model studies Presents analysis of the dynamic response behavior of WECs based on experimental studies on scale models Covers the most recent and novel innovations in the field Includes a discussion of offshore wind farms as a green energy alternative and examines their conceptual development and design This book serves as a useful guide for both academicians and professionals in naval architecture and offshore engineering as well as in civil and structural engineering. In addition, it helps in the understanding of structural behavior in terms of risk criteria, efficiency, service life, and reliability. Readers will gain a comprehensive knowledge of the design and development of offshore wave energy devices and the preliminary design of offshore wind turbines, which are currently largely absent in the scientific literature.

Conceptual Design for Engineers

Conceptual Design for Engineers PDF Author: Michael J. French
Publisher: Springer Science & Business Media
ISBN: 3662113643
Category : Technology & Engineering
Languages : en
Pages : 236

Get Book Here

Book Description
3. 2 Making capital and running costs commensurate 49 3. 3 Optimum speed of a tanker 50 3. 4 The optimisation of the sag:span ratio of a suspension bridge 52 3. 5 Optimisation with more than one degree of freedom: heat exchanger 55 3. 6 Putting a price on heat-exchanger performance 57 3. 7 Variation of costs with application 59 3. 8 Further aspects of heat-exchanger optimisation 59 3. 9 An elementary programming problem 60 3. 10 Classification of optimisation problems and methods of solution 62 3. 11 The design of rotating discs: an optimum structure 66 3. 12 Hubdesign 73 3. 13 Summary 73 Questions 73 Answers 74 4 Insight 4. 1 Introduction 76 4. 2 Rough calculations 76 4. 3 Optimisation of compressor shaft diameter 83 4. 4 The optimum virtual shaft: a digression 85 4. 5 Useful measures and concepts 87 4. 6 Bounds and limits 91 4. 7 Scale effects 94 4. 8 Dimensional analysis and scaling 98 4. 9 Proportion 99 100 4. 10 Change of viewpoint Questions 102 104 Answers 5 Matching 5. 1 Matching: the windlass 107 5. 2 An extended example of matching: ship propulsion 107 5. 3 Matching within a single machine III 5. 4 Further aspects of ship propulsion 112 5. 5 Specific speeds: degrees of freedom 113 5. 6 Matching of a spring to its task liS 5. 7 Matching in thermodynamic processes 117 5. 8 Two old cases of matching 121 5.

Wave and Tidal Energy

Wave and Tidal Energy PDF Author: Deborah Greaves
Publisher: John Wiley & Sons
ISBN: 111901445X
Category : Science
Languages : de
Pages : 717

Get Book Here

Book Description
Eine umfassende Publikation zu sämtlichen Aspekten der Wellen- und Gezeitenenergie. Wave and Tidal Energy gibt einen ausführlichen Überblick über die Entwicklung erneuerbarer Energie aus dem Meer, bezieht sich auf die neueste Forschung und Erfahrungen aus Anlagentests. Das Buch verfolgt zwei Ziele, zum einen vermittelt es Einsteigern in das Fachgebiet eine Überblick über die Wellen- und Gezeitenenergie, zum anderen ist es ein Referenzwerk für komplexere Studien und die Praxis. Es vermittelt Detailwissen zu wichtigen Themen wie Ressourcencharakterisierung, Technologie für Wellen- und Gezeitenanlagen, Stromversorgungssysteme, numerische und physikalische Modellierung, Umwelteffekte und Politik. Zusätzlich enthält es eine aktuelle Übersicht über Entwicklungen in der ganzen Welt sowie Fallstudien zu ausgewählten Projekten. Hauptmerkmale: - Ausführliches Referenzwerk zu allen Aspekten der interdisziplinären Fachrichten Wellen- und Gezeitenenergie. - Greift auf die neuesten Forschungsergebnisse und die Erfahrung führender Experten in der numerischen und laborgestützten Modellierung zurück. - Gibt einen Überblick über regionale Entwicklungen in aller Welt, repräsentative Projekte werden in Fallstudien vorgestellt. Wave and Tidal Energy ist ein wertvolles Referenzwerk für eine breite Leserschaft, von Studenten der Ingenieurwissenschaften und technischen Managern über politische Entscheidungsträger bis hin zu Studienabsolventen und Forschern.

Design Load Analysis for Wave Energy Converters: Preprint

Design Load Analysis for Wave Energy Converters: Preprint PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
This study demonstrates a systematic methodology for establishing the design loads of a wave energy converter (WEC). The proposed design load methodology incorporates existing design guidelines, where they exist, and follows a typical design progression; namely, advancing from many, quick, order-of-magnitude accurate, conceptual stage design computations to a few, computationally intensive, high-fidelity, design validation simulations. The goal of the study is to streamline and document this process based on quantitative evaluations of the design loads' accuracy at each design step and consideration for the computational efficiency of the entire design process. For the WEC, loads, and site conditions considered, this study demonstrates an efficient and accurate methodology of evaluating the design loads.