Computer Techniques for Dynamic Modeling of DC-DC Power Converters

Computer Techniques for Dynamic Modeling of DC-DC Power Converters PDF Author: Farzin Asadi
Publisher: Springer Nature
ISBN: 3031025040
Category : Technology & Engineering
Languages : en
Pages : 75

Get Book

Book Description
Computers play an important role in the analyzing and designing of modern DC-DC power converters. This book shows how the widely used analysis techniques of averaging and linearization can be applied to DC-DC converters with the aid of computers. Obtained dynamical equations may then be used for control design. The book is composed of two chapters. Chapter 1 focuses on the extraction of control-to-output transfer function. A second-order converter (a buck converter) and a fourth-order converter (a Zeta converter) are studied as illustrative examples in this chapter. Both ready-to-use software packages, such as PLECS® and MATLAB® programming, are used throught this chapter. The input/output characteristics of DC-DC converters are the object of considerations in Chapter 2. Calculation of input/output impedance is done with the aid of MATLAB® programming in this chapter. The buck, buck-boost, and boost converter are the most popular types of DC-DC converters and used as illustrative examples in this chapter. This book can be a good reference for researchers involved in DC-DC converters dynamics and control.

Computer Techniques for Dynamic Modeling of DC-DC Power Converters

Computer Techniques for Dynamic Modeling of DC-DC Power Converters PDF Author: Farzin Asadi
Publisher: Springer Nature
ISBN: 3031025040
Category : Technology & Engineering
Languages : en
Pages : 75

Get Book

Book Description
Computers play an important role in the analyzing and designing of modern DC-DC power converters. This book shows how the widely used analysis techniques of averaging and linearization can be applied to DC-DC converters with the aid of computers. Obtained dynamical equations may then be used for control design. The book is composed of two chapters. Chapter 1 focuses on the extraction of control-to-output transfer function. A second-order converter (a buck converter) and a fourth-order converter (a Zeta converter) are studied as illustrative examples in this chapter. Both ready-to-use software packages, such as PLECS® and MATLAB® programming, are used throught this chapter. The input/output characteristics of DC-DC converters are the object of considerations in Chapter 2. Calculation of input/output impedance is done with the aid of MATLAB® programming in this chapter. The buck, buck-boost, and boost converter are the most popular types of DC-DC converters and used as illustrative examples in this chapter. This book can be a good reference for researchers involved in DC-DC converters dynamics and control.

Dynamic Analysis of Switching-Mode DC/DC Converters

Dynamic Analysis of Switching-Mode DC/DC Converters PDF Author: Andre Kislovski
Publisher: Springer Science & Business Media
ISBN: 9401178496
Category : Science
Languages : en
Pages : 409

Get Book

Book Description
The most critical part of the modern switching-mode power supply is the regulated dc/dc converter. Its dynamic behavior directly determines or influences four of the important characteristics of the power supply: • Stability of the feedback loop • Rejection of input-voltage ripple and the closely-related transient re sponse to input-voltage perturbation • Output impedance and the closely-related transient response to load perturbation • Compatibility with the input EMI filter Due to the complexity of the operation of the converter, predicting its dynamic behavior has not been easy. Without accurate prediction, and depending only on building the circuit and tinkering with it until the operation is satisfactory, the engineering cost can easily escalate and schedules can be missed. The situation is not much better when the circuit is built in the computer, using a general-purpose circuit-simulation program such as SPICE. (At the end of this book is a form for obtaining information on a computer program especially well suited for dynamic analysis of switching-mode power converters: DYANA, an acronym for "DYnamic ANAlysis. " DYANA is based on the method given in this book. ) The main goal of this book is to help the power-supply designer in the prediction of the dynamic behavior by providing user-friendly analytical tools, concrete results of already-made analyses, tabulated for easy application by the reader, and examples of how to apply the tools provided in the book.

Average Current-Mode Control of DC-DC Power Converters

Average Current-Mode Control of DC-DC Power Converters PDF Author: Marian K. Kazimierczuk
Publisher: John Wiley & Sons
ISBN: 1119525683
Category : Technology & Engineering
Languages : en
Pages : 340

Get Book

Book Description
AVERAGE CURRENT-MODE CONTROL OF DC-DC POWER CONVERTERS An authoritative one-stop guide to the analysis, design, development, and control of a variety of power converter systems Average Current-Mode Control of DC-DC Power Converters provides comprehensive and up-to-date information about average current-mode control (ACMC) of pulse-width modulated (PWM) dc-dc converters. This invaluable one-stop resource covers both fundamental and state-of-the-art techniques in average current-mode control of power electronic converters???featuring novel small-signal models of non-isolated and isolated converter topologies with joint and disjoint switching elements and coverage of frequency and time domain analysis of controlled circuits. The authors employ a systematic theoretical framework supported by step-by-step derivations, design procedures for measuring transfer functions, challenging end-of-chapter problems, easy-to-follow diagrams and illustrations, numerous examples for different power supply specifications, and practical tips for developing power-stage small-signal models using circuit-averaging techniques. The text addresses all essential aspects of modeling, design, analysis, and simulation of average current-mode control of power converter topologies, such as buck, boost, buck-boost, and flyback converters in operating continuous-conduction mode (CCM). Bridging the gap between fundamental modeling methods and their application in a variety of switched-mode power supplies, this book: Discusses the development of small-signal models and transfer functions related to the inner current and outer voltage loops Analyzes inner current loops with average current-mode control and describes their dynamic characteristics Presents dynamic properties of the poles and zeros, time-domain responses of the control circuits, and comparison of relevant modeling techniques Contains a detailed chapter on the analysis and design of control circuits in time-domain and frequency-domain Provides techniques required to produce professional MATLAB plots and schematics for circuit simulations, including example MATLAB codes for the complete design of PWM buck, boost, buck-boost, and flyback DC-DC converters Includes appendices with design equations for steady-state operation in CCM for power converters, parameters of commonly used power MOSFETs and diodes, SPICE models of selected MOSFETs and diodes, simulation tools including introductions to SPICE, MATLAB, and SABER, and MATLAB codes for transfer functions and transient responses Average Current-Mode Control of DC-DC Power Converters is a must-have reference and guide for researchers, advanced graduate students, and instructors in the area of power electronics, and for practicing engineers and scientists specializing in advanced circuit modeling methods for various converters at different operating conditions.

Dynamics and Control of DC-DC Converters

Dynamics and Control of DC-DC Converters PDF Author: Farzin Asadi
Publisher: Springer Nature
ISBN: 3031025024
Category : Technology & Engineering
Languages : en
Pages : 229

Get Book

Book Description
DC-DC converters have many applications in the modern world. They provide the required power to the communication backbones, they are used in digital devices like laptops and cell phones, and they have widespread applications in electric cars, to just name a few. DC-DC converters require negative feedback to provide a suitable output voltage or current for the load. Obtaining a stable output voltage or current in presence of disturbances such as: input voltage changes and/or output load changes seems impossible without some form of control. This book tries to train the art of controller design for DC-DC converters. Chapter 1 introduces the DC-DC converters briefly. It is assumed that the reader has the basic knowledge of DC-DC converter (i.e., a basic course in power electronics). The reader learns the disadvantages of open loop control in Chapter 2. Simulation of DC-DC converters with the aid of Simulink® is discussed in this chapter as well. Extracting the dynamic models of DC-DC converters is studied in Chapter 3. We show how MATLAB® and a software named KUCA can be used to do the cumbersome and error-prone process of modeling automatically. Obtaining the transfer functions using PSIM® is studied as well. These days, softwares are an integral part of engineering sciences. Control engineering is not an exception by any means. Keeping this in mind, we design the controllers using MATLAB® in Chapter 4. Finally, references are provided at the end of each chapter to suggest more information for an interested reader. The intended audiencies for this book are practice engineers and academians.

Power Electronics Circuit Analysis with PSIM®

Power Electronics Circuit Analysis with PSIM® PDF Author: Farzin Asadi
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110740656
Category : Technology & Engineering
Languages : en
Pages : 606

Get Book

Book Description
Power electronics systems are nonlinear variable structure systems. They involve passive components such as resistors, capacitors, and inductors, semiconductor switches such as thyristors and MOSFETs, and circuits for control. The analysis and design of such systems presents significant challenges. Fortunately, increased availability of powerful computer and simulation programs makes the analysis/design process much easier. PSIM® is an electronic circuit simulation software package, designed specifically for use in power electronics and motor drive simulations but can be used to simulate any electronic circuit. With fast simulation speed and user friendly interface, PSIM provides a powerful simulation environment to meed the user simulation and development needs. This book shows how to simulate the power electronics circuits in PSIM environment. The prerequisite for this book is a first course on power electronics. This book is composed of eight chapters: Chapter 1 is an introduction to PSIM. Chapter 2 shows the fundamentals of circuit simulation with PSIM. Chapter 3 introduces the SimviewTM. Simview is PSIM’s waveform display and post-processing program. Chapter 4 introduces the most commonly used components of PSIM. Chapter 5 shows how PSIM can be used for analysis of power electronics circuits. 45 examples are studied in this chapter. Chapter 6 shows how you can simulate motors and mechanical loads in PSIM. Chapter 7 introduces the SimCouplerTM. Simcoupler fuses PSIM with Simulink® by providing an interface for co-simulation. Chapter 8 introduces the SmartCtrl®. SmartCtrl is a controller design software specifically geared towards power electronics applications. https://powersimtech.com/2021/10/01/book-release-power-electronics-circuit-analysis-with-psim/

Modeling Uncertainties in DC-DC Converters with MATLAB® and PLECS®

Modeling Uncertainties in DC-DC Converters with MATLAB® and PLECS® PDF Author: Farzin Asadi
Publisher: Springer Nature
ISBN: 3031020200
Category : Technology & Engineering
Languages : en
Pages : 280

Get Book

Book Description
Modeling is the process of formulating a mathematical description of the system. A model, no matter how detailed, is never a completely accurate representation of a real physical system. A mathematical model is always just an approximation of the true, physical reality of the system dynamics. Uncertainty refers to the differences or errors between model and real systems and whatever methodology is used to present these errors will be called an uncertainty model. Successful robust control-system design would depend on, to a certain extent, an appropriate description of the perturbation considered. Modeling the uncertainties in the switch mode DC-DC converters is an important step in designing robust controllers. This book studies different techniques which can be used to extract the uncertain model of DC-DC converters. Once the uncertain model is extracted, robust control techniques such as ∞ and μ synthesis can be used to design the robust controller. The book composed of two case studies. The first one is a buck converter and the second one is a Zeta converter. MATLAB® programming is used extensively throughout the book. Some sections use PLECS® as well. This book is intended to be guide for both academicians and practicing engineers.

Essential Circuit Analysis Using Proteus®

Essential Circuit Analysis Using Proteus® PDF Author: Farzin Asadi
Publisher: Springer Nature
ISBN: 9811943532
Category : Technology & Engineering
Languages : en
Pages : 672

Get Book

Book Description
This textbook provides a compact but comprehensive treatment that guides students through the analysis of circuits, using Proteus®. The book focuses on solving problems using updated market-standard software, corresponding to all key concepts covered in the classroom. The author uses his extensive classroom experience to guide students toward a deeper understanding of key concepts while they gain facility with the software they will need to master for later studies and practical use in their engineering careers. The book includes detailed exercises and examples that provide better grasping to students. This book will be ideal as a hands-on source for courses in computer-aided circuit simulation, circuits, electronics, digital logic, and power electronics. Though written primarily for undergraduate and graduate students, the text will also be useful to Ph.D. scholars and practitioners in engineering who are working on Proteus.

Machine Learning for Solar Array Monitoring, Optimization, and Control

Machine Learning for Solar Array Monitoring, Optimization, and Control PDF Author: Sunil Rao
Publisher: Springer Nature
ISBN: 3031025059
Category : Technology & Engineering
Languages : en
Pages : 81

Get Book

Book Description
The efficiency of solar energy farms requires detailed analytics and information on each panel regarding voltage, current, temperature, and irradiance. Monitoring utility-scale solar arrays was shown to minimize the cost of maintenance and help optimize the performance of the photo-voltaic arrays under various conditions. We describe a project that includes development of machine learning and signal processing algorithms along with a solar array testbed for the purpose of PV monitoring and control. The 18kW PV array testbed consists of 104 panels fitted with smart monitoring devices. Each of these devices embeds sensors, wireless transceivers, and relays that enable continuous monitoring, fault detection, and real-time connection topology changes. The facility enables networked data exchanges via the use of wireless data sharing with servers, fusion and control centers, and mobile devices. We develop machine learning and neural network algorithms for fault classification. In addition, we use weather camera data for cloud movement prediction using kernel regression techniques which serves as the input that guides topology reconfiguration. Camera and satellite sensing of skyline features as well as parameter sensing at each panel provides information for fault detection and power output optimization using topology reconfiguration achieved using programmable actuators (relays) in the SMDs. More specifically, a custom neural network algorithm guides the selection among four standardized topologies. Accuracy in fault detection is demonstrate at the level of 90+% and topology optimization provides increase in power by as much as 16% under shading.

Feedback Control Systems

Feedback Control Systems PDF Author: Farzin Asadi
Publisher: Springer Nature
ISBN: 3031018311
Category : Computers
Languages : en
Pages : 212

Get Book

Book Description
Feedback control systems is an important course in aerospace engineering, chemical engineering, electrical engineering, mechanical engineering, and mechatronics engineering, to name just a few. Feedback control systems improve the system's behavior so the desired response can be acheived. The first course on control engineering deals with Continuous Time (CT) Linear Time Invariant (LTI) systems. Plenty of good textbooks on the subject are available on the market, so there is no need to add one more. This book does not focus on the control engineering theories as it is assumed that the reader is familiar with them, i.e., took/takes a course on control engineering, and now wants to learn the applications of MATLAB® in control engineering. The focus of this book is control engineering applications of MATLAB® for a first course on control engineering.

Pulse Width Modulated DC-DC Converters

Pulse Width Modulated DC-DC Converters PDF Author: Keng Chih Wu
Publisher: Springer Science & Business Media
ISBN: 1461560217
Category : Technology & Engineering
Languages : en
Pages : 242

Get Book

Book Description
For the first time in power electronics, this comprehensive treatment of switch-mode DC/DC converter designs addresses many analytical closed form equations such as duty cycle prediction, output regulation, output ripple, control loop-gain, and steady state time-domain waveform. Each of these equations are given various topologists and configurations, including forward, flyback, and boost converters. Pulse Width Modulated DC/DC Converters begins with a detailed approach to the quiescent operating locus of a power plant under open-loop. The reader is then led through other supporting circuits once again in the quiescent condition. These exercises result in the close-loop formulations of the subject system, providing designers with the ability to study the sensitivities of a system against disturbances. With the quiescent conditions well established, the book then guides the reader further into the territories of system stability where small signal behaviors are explored. Finally, some important large signal time-domain studies cap the treatment. Some distinctive features of this book include: *detailed coverage of dynamic close-loop converter simulations using only personal computer and modern mathematical software *Steady-state, time-domain analysis based on the concept of continuity of states Voltage-mode and current-mode control techniques and their differences of merits A detailed description on setting up different equations for DC/DC converters'simulation using only PC