Computer Simulation of Inspiratory Flow and Particle Deposition in Human Oral Airway

Computer Simulation of Inspiratory Flow and Particle Deposition in Human Oral Airway PDF Author: Xiaobo Zhu
Publisher:
ISBN:
Category : Aerosol therapy
Languages : en
Pages : 104

Get Book Here

Book Description

Computer Simulation of Inspiratory Flow and Particle Deposition in Human Oral Airway

Computer Simulation of Inspiratory Flow and Particle Deposition in Human Oral Airway PDF Author: Xiaobo Zhu
Publisher:
ISBN:
Category : Aerosol therapy
Languages : en
Pages : 104

Get Book Here

Book Description


Computational Fluid and Particle Dynamics in the Human Respiratory System

Computational Fluid and Particle Dynamics in the Human Respiratory System PDF Author: Jiyuan Tu
Publisher: Springer Science & Business Media
ISBN: 9400744870
Category : Technology & Engineering
Languages : en
Pages : 383

Get Book Here

Book Description
Traditional research methodologies in the human respiratory system have always been challenging due to their invasive nature. Recent advances in medical imaging and computational fluid dynamics (CFD) have accelerated this research. This book compiles and details recent advances in the modelling of the respiratory system for researchers, engineers, scientists, and health practitioners. It breaks down the complexities of this field and provides both students and scientists with an introduction and starting point to the physiology of the respiratory system, fluid dynamics and advanced CFD modeling tools. In addition to a brief introduction to the physics of the respiratory system and an overview of computational methods, the book contains best-practice guidelines for establishing high-quality computational models and simulations. Inspiration for new simulations can be gained through innovative case studies as well as hands-on practice using pre-made computational code. Last but not least, students and researchers are presented the latest biomedical research activities, and the computational visualizations will enhance their understanding of physiological functions of the respiratory system.

Simulation of Turbulent Airflow and Particle Deposition in Human and Animal Airways

Simulation of Turbulent Airflow and Particle Deposition in Human and Animal Airways PDF Author: Taylor Steven Geisler
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Prolonged exposure to inhaled micron-sized airborne particles is a known public health concern. These particles impact the health of staggering numbers of residents of polluted urban areas, as well as significant portions of the third world where it is still common to burn wood or charcoal indoors for cooking or heating. An understanding of the fate of inhaled particles in the lungs is useful for assessing their associated health risks, as well as improving the effectiveness of respiratory drug delivery techniques. The transport of microparticles is inseparable from behavior of the suspending airflow and this is studied using computational fluid dynamics techniques. The anatomy of the airways seems to have evolved to encourage turbulent airflow for functions such as mixing of flow to promote the warming and humidification of inhaled air, as well as for filtration. Large eddy simulation models are employed to capture turbulent flow in extremely complex patient-specific airway geometries. These collectively comprise the oral and nasal cavities, larynx, trachea, and the bronchial tree. The flow in anatomically-accurate rhesus macaque airways is also studied. Simulations are carried out for inspiratory flow rates corresponding to nominal Reynolds numbers in the hundreds to low-thousands yet somewhat surprisingly yield unsteady flows due to local geometric factors. A computed mean flow field is compared extensively with magnetic resonance velocimetry measurements carried out in the same computed-tomography--based lung geometry, showing good agreement. Microparticle deposition predictions are also verified. Focus is placed on the dynamics of the flow in the nasal airway, trachea, and bronchial tree. After becoming unsteady at constrictions in the upper airways, the flow is found to be chaotic, exhibiting fluctuations with broad-band spectra even at the most distal simulated airways in which the Reynolds numbers are as low as 300. The unsteadiness is attributed to the convection of turbulent structures produced in the upper airways as well as to local kinetic energy production throughout the bronchial tree.

Particle Deposition Patterns in Human Upper Bronchial Airways Under Simulated Inspiratory Flow

Particle Deposition Patterns in Human Upper Bronchial Airways Under Simulated Inspiratory Flow PDF Author: Joshua Gurman
Publisher:
ISBN:
Category :
Languages : en
Pages : 246

Get Book Here

Book Description


Comparison of Particle Deposition for Realistic Adult and Adolescent Upper Airway Geometries Using Unsteady Computational Fluid Dynamics

Comparison of Particle Deposition for Realistic Adult and Adolescent Upper Airway Geometries Using Unsteady Computational Fluid Dynamics PDF Author: Jonathan Steffens
Publisher:
ISBN:
Category : Atmospheric deposition
Languages : en
Pages : 230

Get Book Here

Book Description
"Particle deposition in the respiratory tract is studied in order to better understand the negative health effects due to cigarette smoke inhalation. Until recently, idealized models of the respiratory airways based on the original Weibel model have been used to calculate deposition. These models consist of symmetric bifurcating airways and do not take into account variations of airway diameter, and asymmetry in the human respiratory tract. Until recently, little work has been done to accurately recreate the entire upper respiratory tract including the oral cavity, pharynx, and larynx. Technological improvement has changed the way in which researchers approach this problem. With the advent of high resolution scans of the respiratory tract, accurate replica models can be created to better predict cigarette smoke particle (CSP) deposition. These models recreate actual lung geometries found in patients. For this thesis, two realistic geometric models are created. One is based on an adult male and the other on an adolescent male. CSP deposition is determined for both models in order to compare the difference cased by age in smoking. In addition, an unsteady breathing curve, indicative of realistic smoking behavior is utilized to more accurately represent the breathing conditions. Both models consist of the oral cavity, throat, larynx, trachea, and first five to seven generations of the lungs. The adult model is based on a dental cast of the mouth, a CT scan of the throat and larynx, and images based on the National Institute of Health's Visible Human Project for the tracheobronchial tree. The adolescent model is based upon a scaled oral cavity and CT scans of the rest of the reparatory tract. The program 3D Doctor is used to reconstruct the two dimensional CT scan images into a three dimensional model. VPSculpt and SolidWorks are used to combine the different parts of the models and clean up the geometry. The geometry is meshed in Gambit and exported to the Computational Fluid Dynamics (CFD) software package Fluent to perform the fluid flow and particle deposition analysis. The Fluent Discrete Phase Model (DPM) is used to determine particle trajectories and deposition. It is found that deposition increases with the size of the inhaled particles. Particles tend to deposit towards the back of the throat, the area of the trachea just below the glottis, and at bifurcations in the airways. However, when compared to other studies in literature, deposition tended to be higher with smaller particle sizes, but more comparable with larger particle sizes. Adolescent deposition was found to be lower than adult deposition for all particle sizes."--Abstract.

Numerical Simulation of Airflow, Particle Deposition and Drug Delivery in a Representative Human Nasal Airway Model

Numerical Simulation of Airflow, Particle Deposition and Drug Delivery in a Representative Human Nasal Airway Model PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The human nasal cavities, each with an effective length of only 10cm, feature a wide array of basic flow phenomena due to their complex geometries. Dependent on such airflow fields are the transport and deposition of micro- and nano- particles in the human nasal cavities, of interest to engineers, scientists, air-pollution regulators, and healthcare officials. By utilizing advanced CAD and reverse engineering skills, a realistic model of the human nasal cavity was constructed from MRI image data for 3-D computer simulations. Assuming laminar quasi-steady airflow, dilute micro- and nano-particle suspension flows and local deposition efficiencies were analyzed for 7.5

Voltaire en son temps

Voltaire en son temps PDF Author: René Pomeau
Publisher:
ISBN: 9780729404938
Category :
Languages : en
Pages : 876

Get Book Here

Book Description


Particle Deposition in Airway Bifurcations for Inspiratory Flow

Particle Deposition in Airway Bifurcations for Inspiratory Flow PDF Author: I. Balásházy
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


The 15th International Conference on Biomedical Engineering

The 15th International Conference on Biomedical Engineering PDF Author: James Goh
Publisher: Springer Science & Business Media
ISBN: 3319029134
Category : Technology & Engineering
Languages : en
Pages : 998

Get Book Here

Book Description
This volume presents the processing of the 15th ICMBE held from 4th to 7th December 2013, Singapore. Biomedical engineering is applied in most aspects of our healthcare ecosystem. From electronic health records to diagnostic tools to therapeutic, rehabilitative and regenerative treatments, the work of biomedical engineers is evident. Biomedical engineers work at the intersection of engineering, life sciences and healthcare. The engineers would use principles from applied science including mechanical, electrical, chemical and computer engineering together with physical sciences including physics, chemistry and mathematics to apply them to biology and medicine. Applying such concepts to the human body is very much the same concepts that go into building and programming a machine. The goal is to better understand, replace or fix a target system to ultimately improve the quality of healthcare. With this understanding, the conference proceedings offer a single platform for individuals and organizations working in the biomedical engineering related field to gather and network with each other in so doing create the catalyst for future development of biomedical engineering in Asia.

Comparative Biology of the Normal Lung

Comparative Biology of the Normal Lung PDF Author: Richard A. Parent
Publisher: Academic Press
ISBN: 0124047262
Category : Medical
Languages : en
Pages : 835

Get Book Here

Book Description
Comparative Biology of the Normal Lung, Second Edition, offers a rigorous and comprehensive reference for all those involved in pulmonary research. This fully updated work is divided into sections on anatomy and morphology, physiology, biochemistry, and immunological response. It continues to provide a unique comparative perspective on the mammalian lung. This edition includes several new chapters and expanded content, including aging and development of the normal lung, mechanical properties of the lung, genetic polymorphisms, the comparative effect of stress of pulmonary immune function, oxygen signaling in the mammalian lung and much more. By addressing scientific advances and critical issues in lung research, this 2nd edition is a timely and valuable work on comparative data for the interpretation of studies of animal models as compared to the human lung. - Edited and authored by experts in the field to provide an excellent and timely review of cross-species comparisons that will help you interpret and compare data from animal studies to human findings - Incorporates lung anatomy and physiology, cell specific interactions and immunological responses to provide you with a single and unique multidisciplinary source on the comparative biology of the normal lung - Includes new and expanded content on neonatal and aged lungs, developmental processes, cell signaling, antioxidants, airway cells, safety pharmacology and much more - Section IV on Physical and Immunological Defenses has been significantly updated with 9 new chapters and an increased focus on the pulmonary immunological system