Author: Samit Roy
Publisher: CRC Press
ISBN: 1466586508
Category : Science
Languages : en
Pages : 296
Book Description
This book provides a better understanding of the theories associated with finite element models of elastic and viscoelastic response of polymers and polymer composites. It covers computational modeling and life-prediction of polymers and polymeric composites in aggressive environments. It begins with a review of mathematical preliminaries, equations of anisotropic elasticity, and then presents finite element analysis of viscoelasticity and the diffusion process in polymers and polymeric composites. The book provides a reference for engineers and scientists and can be used as a textbook in graduate courses.
Computational Modeling of Polymer Composites
Computational Modeling of Polymers
Author: Jozef Bicerano
Publisher: CRC Press
ISBN: 9780824784386
Category : Technology & Engineering
Languages : en
Pages : 672
Book Description
Publisher: CRC Press
ISBN: 9780824784386
Category : Technology & Engineering
Languages : en
Pages : 672
Book Description
Multiscale Modeling and Simulation of Composite Materials and Structures
Author: Young Kwon
Publisher: Springer Science & Business Media
ISBN: 0387363181
Category : Technology & Engineering
Languages : en
Pages : 634
Book Description
This book presents the state-of-the-art in multiscale modeling and simulation techniques for composite materials and structures. It focuses on the structural and functional properties of engineering composites and the sustainable high performance of components and structures. The multiscale techniques can be also applied to nanocomposites which are important application areas in nanotechnology. There are few books available on this topic.
Publisher: Springer Science & Business Media
ISBN: 0387363181
Category : Technology & Engineering
Languages : en
Pages : 634
Book Description
This book presents the state-of-the-art in multiscale modeling and simulation techniques for composite materials and structures. It focuses on the structural and functional properties of engineering composites and the sustainable high performance of components and structures. The multiscale techniques can be also applied to nanocomposites which are important application areas in nanotechnology. There are few books available on this topic.
Theory and Modeling of Polymer Nanocomposites
Author: Valeriy V. Ginzburg
Publisher: Springer Nature
ISBN: 3030604438
Category : Technology & Engineering
Languages : en
Pages : 330
Book Description
This edited volume brings together the state of the art in polymer nanocomposite theory and modeling, creating a roadmap for scientists and engineers seeking to design new advanced materials. The book opens with a review of molecular and mesoscale models predicting equilibrium and non-equilibrium nanoscale structure of hybrid materials as a function of composition and, especially, filler types. Subsequent chapters cover the methods and analyses used for describing the dynamics of nanocomposites and their mechanical and physical properties. Dedicated chapters present best practices for predicting materials properties of practical interest, including thermal and electrical conductivity, optical properties, barrier properties, and flammability. Each chapter is written by leading academic and industrial scientists working in each respective sub-field. The overview of modeling methodology combined with detailed examples of property predictions for specific systems will make this book useful for academic and industrial practitioners alike.
Publisher: Springer Nature
ISBN: 3030604438
Category : Technology & Engineering
Languages : en
Pages : 330
Book Description
This edited volume brings together the state of the art in polymer nanocomposite theory and modeling, creating a roadmap for scientists and engineers seeking to design new advanced materials. The book opens with a review of molecular and mesoscale models predicting equilibrium and non-equilibrium nanoscale structure of hybrid materials as a function of composition and, especially, filler types. Subsequent chapters cover the methods and analyses used for describing the dynamics of nanocomposites and their mechanical and physical properties. Dedicated chapters present best practices for predicting materials properties of practical interest, including thermal and electrical conductivity, optical properties, barrier properties, and flammability. Each chapter is written by leading academic and industrial scientists working in each respective sub-field. The overview of modeling methodology combined with detailed examples of property predictions for specific systems will make this book useful for academic and industrial practitioners alike.
Multi-Scale Continuum Mechanics Modelling of Fibre-Reinforced Polymer Composites
Author: Wim Van Paepegem
Publisher: Woodhead Publishing
ISBN: 0128189851
Category : Technology & Engineering
Languages : en
Pages : 766
Book Description
Multi-scale modelling of composites is a very relevant topic in composites science. This is illustrated by the numerous sessions in the recent European and International Conferences on Composite Materials, but also by the fast developments in multi-scale modelling software tools, developed by large industrial players such as Siemens (Virtual Material Characterization toolkit and MultiMechanics virtual testing software), MSC/e-Xstream (Digimat software), Simulia (micromechanics plug-in in Abaqus), HyperSizer (Multi-scale design of composites), Altair (Altair Multiscale Designer) This book is intended to be an ideal reference on the latest advances in multi-scale modelling of fibre-reinforced polymer composites, that is accessible for both (young) researchers and end users of modelling software. We target three main groups: This book aims at a complete introduction and overview of the state-of-the-art in multi-scale modelling of composites in three axes: • ranging from prediction of homogenized elastic properties to nonlinear material behaviour • ranging from geometrical models for random packing of unidirectional fibres over meso-scale geometries for textile composites to orientation tensors for short fibre composites • ranging from damage modelling of unidirectionally reinforced composites over textile composites to short fibre-reinforced composites The book covers the three most important scales in multi-scale modelling of composites: (i) micro-scale, (ii) meso-scale and (iii) macro-scale. The nano-scale and related atomistic and molecular modelling approaches are deliberately excluded, since the book wants to focus on continuum mechanics and there are already a lot of dedicated books about polymer nanocomposites. A strong focus is put on physics-based damage modelling, in the sense that the chapters devote attention to modelling the different damage mechanisms (matrix cracking, fibre/matrix debonding, delamination, fibre fracture,...) in such a way that the underlying physics of the initiation and growth of these damage modes is respected. The book also gives room to not only discuss the finite element based approaches for multi-scale modelling, but also much faster methods that are popular in industrial software, such as Mean Field Homogenization methods (based on Mori-Tanaka and Eshelby solutions) and variational methods (shear lag theory and more advanced theories). Since the book targets a wide audience, the focus is put on the most common numerical approaches that are used in multi-scale modelling. Very specialized numerical methods like peridynamics modelling, Material Point Method, eXtended Finite Element Method (XFEM), isogeometric analysis, SPH (Smoothed Particle Hydrodynamics),... are excluded. Outline of the book The book is divided in three large parts, well balanced with each a similar number of chapters:
Publisher: Woodhead Publishing
ISBN: 0128189851
Category : Technology & Engineering
Languages : en
Pages : 766
Book Description
Multi-scale modelling of composites is a very relevant topic in composites science. This is illustrated by the numerous sessions in the recent European and International Conferences on Composite Materials, but also by the fast developments in multi-scale modelling software tools, developed by large industrial players such as Siemens (Virtual Material Characterization toolkit and MultiMechanics virtual testing software), MSC/e-Xstream (Digimat software), Simulia (micromechanics plug-in in Abaqus), HyperSizer (Multi-scale design of composites), Altair (Altair Multiscale Designer) This book is intended to be an ideal reference on the latest advances in multi-scale modelling of fibre-reinforced polymer composites, that is accessible for both (young) researchers and end users of modelling software. We target three main groups: This book aims at a complete introduction and overview of the state-of-the-art in multi-scale modelling of composites in three axes: • ranging from prediction of homogenized elastic properties to nonlinear material behaviour • ranging from geometrical models for random packing of unidirectional fibres over meso-scale geometries for textile composites to orientation tensors for short fibre composites • ranging from damage modelling of unidirectionally reinforced composites over textile composites to short fibre-reinforced composites The book covers the three most important scales in multi-scale modelling of composites: (i) micro-scale, (ii) meso-scale and (iii) macro-scale. The nano-scale and related atomistic and molecular modelling approaches are deliberately excluded, since the book wants to focus on continuum mechanics and there are already a lot of dedicated books about polymer nanocomposites. A strong focus is put on physics-based damage modelling, in the sense that the chapters devote attention to modelling the different damage mechanisms (matrix cracking, fibre/matrix debonding, delamination, fibre fracture,...) in such a way that the underlying physics of the initiation and growth of these damage modes is respected. The book also gives room to not only discuss the finite element based approaches for multi-scale modelling, but also much faster methods that are popular in industrial software, such as Mean Field Homogenization methods (based on Mori-Tanaka and Eshelby solutions) and variational methods (shear lag theory and more advanced theories). Since the book targets a wide audience, the focus is put on the most common numerical approaches that are used in multi-scale modelling. Very specialized numerical methods like peridynamics modelling, Material Point Method, eXtended Finite Element Method (XFEM), isogeometric analysis, SPH (Smoothed Particle Hydrodynamics),... are excluded. Outline of the book The book is divided in three large parts, well balanced with each a similar number of chapters:
Process Modeling in Composites Manufacturing
Author: Suresh G. Advani
Publisher: CRC Press
ISBN: 1466580569
Category : Technology & Engineering
Languages : en
Pages : 628
Book Description
There is a wealth of literature on modeling and simulation of polymer composite manufacturing processes. However, existing books neglect to provide a systematic explanation of how to formulate and apply science-based models in polymer composite manufacturing processes. Process Modeling in Composites Manufacturing, Second Edition provides tangible m
Publisher: CRC Press
ISBN: 1466580569
Category : Technology & Engineering
Languages : en
Pages : 628
Book Description
There is a wealth of literature on modeling and simulation of polymer composite manufacturing processes. However, existing books neglect to provide a systematic explanation of how to formulate and apply science-based models in polymer composite manufacturing processes. Process Modeling in Composites Manufacturing, Second Edition provides tangible m
Polymer Composites
Author: Klaus Friedrich
Publisher: Springer Science & Business Media
ISBN: 038726213X
Category : Technology & Engineering
Languages : en
Pages : 374
Book Description
The use of polymer composites in various engineering applications has become state of the art. This multi-author volume provides a useful summary of updated knowledge on polymer composites in general, practically integrating experimental studies, theoretical analyses and computational modeling at different scales, i. e. , from nano- to macroscale. Detailed consideration is given to four major areas: structure and properties of polymer nanocomposites, characterization and modeling, processing and application of macrocomposites, and mechanical performance of macrocomposites. The idea to organize this volume arose from a very impressive workshop - The First International Workshop on Polymers and Composites at IVW Kaiserslautern: Invited Humboldt-Fellows and Distinguished Scientists, which was held on May 22-24,2003 at the University of Kaiserslautern, Germany. The contributing authors were invited to incorporate updated knowledge and developments into their individual chapters within a year after the workshop, which finally led to these excellent contributions. The success of this workshop was mainly sponsored by the German Alexander von Humboldt Foundation through a Sofia Kovalevskaja Award Program, financed by the Federal Ministry for Education and Research within the "Investment in the Future Program" of the German Government. In 2001, the Humboldt Foundation launched this new award program in order to offer outstanding young researchers throughout the world an opportunity to establish their own work-groups and to develop innovative research concepts virtually in Germany. One of the editors, Z.
Publisher: Springer Science & Business Media
ISBN: 038726213X
Category : Technology & Engineering
Languages : en
Pages : 374
Book Description
The use of polymer composites in various engineering applications has become state of the art. This multi-author volume provides a useful summary of updated knowledge on polymer composites in general, practically integrating experimental studies, theoretical analyses and computational modeling at different scales, i. e. , from nano- to macroscale. Detailed consideration is given to four major areas: structure and properties of polymer nanocomposites, characterization and modeling, processing and application of macrocomposites, and mechanical performance of macrocomposites. The idea to organize this volume arose from a very impressive workshop - The First International Workshop on Polymers and Composites at IVW Kaiserslautern: Invited Humboldt-Fellows and Distinguished Scientists, which was held on May 22-24,2003 at the University of Kaiserslautern, Germany. The contributing authors were invited to incorporate updated knowledge and developments into their individual chapters within a year after the workshop, which finally led to these excellent contributions. The success of this workshop was mainly sponsored by the German Alexander von Humboldt Foundation through a Sofia Kovalevskaja Award Program, financed by the Federal Ministry for Education and Research within the "Investment in the Future Program" of the German Government. In 2001, the Humboldt Foundation launched this new award program in order to offer outstanding young researchers throughout the world an opportunity to establish their own work-groups and to develop innovative research concepts virtually in Germany. One of the editors, Z.
Polymer Composites in the Aerospace Industry
Author: P. E. Irving
Publisher: Elsevier
ISBN: 0857099183
Category : Technology & Engineering
Languages : en
Pages : 537
Book Description
Polymer composites are increasingly used in aerospace applications due to properties such as strength and durability compared to weight. Edited by two leading authorities in the field, this book summarises key recent research on design, manufacture and performance of composite components for aerospace structures. Part one reviews the design and manufacture of different types of composite component. Part two discusses aspects of performance such as stiffness, strength, fatigue, impact and blast behaviour, response to temperature and humidity as well as non-destructive testing and monitoring techniques.
Publisher: Elsevier
ISBN: 0857099183
Category : Technology & Engineering
Languages : en
Pages : 537
Book Description
Polymer composites are increasingly used in aerospace applications due to properties such as strength and durability compared to weight. Edited by two leading authorities in the field, this book summarises key recent research on design, manufacture and performance of composite components for aerospace structures. Part one reviews the design and manufacture of different types of composite component. Part two discusses aspects of performance such as stiffness, strength, fatigue, impact and blast behaviour, response to temperature and humidity as well as non-destructive testing and monitoring techniques.
Green Biocomposites for Biomedical Engineering
Author: Md Enamul Hoque
Publisher: Woodhead Publishing
ISBN: 0128215542
Category : Technology & Engineering
Languages : en
Pages : 476
Book Description
Green Biocomposites for Biomedical Engineering: Design, Properties, and Applications combines emergent research outcomes with fundamental theoretical concepts relevant to processing, properties and applications of advanced green composites in the field of biomedical engineering. The book outlines the design elements and characterization of biocomposites, highlighting each class of biocomposite separately. A broad range of biomedical applications for biocomposites is then covered, with a final section discussing the ethics and safety regulations associated with manufacturing and the use of biocomposites. With contributions from eminent editors and recognized authors around the world, this book is a vital reference for researchers in biomedical engineering, materials science and environmental science, both in industry and academia. - Provides comprehensive information regarding current advances in the interdisciplinary field of eco-friendly green composite materials for biomedical applications - Offers coverage of state-of-the-art physics-based advanced models used in composites - Lists a broad range of characterization techniques and biomedical applications
Publisher: Woodhead Publishing
ISBN: 0128215542
Category : Technology & Engineering
Languages : en
Pages : 476
Book Description
Green Biocomposites for Biomedical Engineering: Design, Properties, and Applications combines emergent research outcomes with fundamental theoretical concepts relevant to processing, properties and applications of advanced green composites in the field of biomedical engineering. The book outlines the design elements and characterization of biocomposites, highlighting each class of biocomposite separately. A broad range of biomedical applications for biocomposites is then covered, with a final section discussing the ethics and safety regulations associated with manufacturing and the use of biocomposites. With contributions from eminent editors and recognized authors around the world, this book is a vital reference for researchers in biomedical engineering, materials science and environmental science, both in industry and academia. - Provides comprehensive information regarding current advances in the interdisciplinary field of eco-friendly green composite materials for biomedical applications - Offers coverage of state-of-the-art physics-based advanced models used in composites - Lists a broad range of characterization techniques and biomedical applications
Multiscale Modeling Approaches for Composites
Author: George Chatzigeorgiou
Publisher: Elsevier
ISBN: 0128233702
Category : Technology & Engineering
Languages : en
Pages : 366
Book Description
Multiscale Modeling Approaches for Composites outlines the fundamentals of common multiscale modeling techniques and provides detailed guidance for putting them into practice. Various homogenization methods are presented in a simple, didactic manner, with an array of numerical examples. The book starts by covering the theoretical underpinnings of tensors and continuum mechanics concepts, then passes to actual micromechanic techniques for composite media and laminate plates. In the last chapters the book covers advanced topics in homogenization, including Green's tensor, Hashin-Shtrikman bounds, and special types of problems. All chapters feature comprehensive analytical and numerical examples (Python and ABAQUS scripts) to better illustrate the theory. - Bridges theory and practice, providing step-by-step instructions for implementing multiscale modeling approaches for composites and the theoretical concepts behind them - Covers boundary conditions, data-exchange between scales, the Hill-Mandel principle, average stress and strain theorems, and more - Discusses how to obtain composite properties using different boundary conditions - Includes access to a companion site, featuring the numerical examples, Python and ABACUS codes discussed in the book
Publisher: Elsevier
ISBN: 0128233702
Category : Technology & Engineering
Languages : en
Pages : 366
Book Description
Multiscale Modeling Approaches for Composites outlines the fundamentals of common multiscale modeling techniques and provides detailed guidance for putting them into practice. Various homogenization methods are presented in a simple, didactic manner, with an array of numerical examples. The book starts by covering the theoretical underpinnings of tensors and continuum mechanics concepts, then passes to actual micromechanic techniques for composite media and laminate plates. In the last chapters the book covers advanced topics in homogenization, including Green's tensor, Hashin-Shtrikman bounds, and special types of problems. All chapters feature comprehensive analytical and numerical examples (Python and ABAQUS scripts) to better illustrate the theory. - Bridges theory and practice, providing step-by-step instructions for implementing multiscale modeling approaches for composites and the theoretical concepts behind them - Covers boundary conditions, data-exchange between scales, the Hill-Mandel principle, average stress and strain theorems, and more - Discusses how to obtain composite properties using different boundary conditions - Includes access to a companion site, featuring the numerical examples, Python and ABACUS codes discussed in the book