Computational Framework for Fracture in Heterogeneous Materials

Computational Framework for Fracture in Heterogeneous Materials PDF Author: Graeme Edwards
Publisher:
ISBN:
Category : Fracture mechanics
Languages : en
Pages : 160

Get Book Here

Book Description


Nucleation and Propagation of Fracture in Heterogeneous Materials

Nucleation and Propagation of Fracture in Heterogeneous Materials PDF Author: Gabriele Albertini
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Failure of materials and interfaces is mediated by the propagation of cracks. They nucleate locally and slowly then, as they exceed a critical size, accelerate and reach speeds approaching the speed of sound of the surrounding material. As they propagate, they dissipate energy within a confined region at the crack tip, which approaches a mathematical singularity. As a result, the initiation and propagation of cracks is a spatial and temporal multiscale phenomenon. The framework of linear elastic fracture mechanics captures many aspects related to the dynamic propagation of cracks in homogeneous media. However, the propagation of a crack within a medium with heterogeneous elastic or fracture properties cannot be addressed theoretically. It is in these complex, heterogeneous cases that numerical simulations and experiments shine. The material heterogeneity introduces additional length scales to the problem, which characterize the geometrical properties or spatial correlation of the heterogeneities. The interaction of these geometrical length scales with fracture mechanics related ones is not well understood, but it could provide crucial insights for the design of new materials and interfaces with unprecedented fracture properties. This thesis investigates different aspects of crack nucleation and propagation in heterogeneous materials and interfaces, including nucleation of mode II ruptures on interfaces with random local properties, dynamic mode II rupture propagation within elastically heterogeneous media, and dynamic mode I rupture propagation within a material with periodic heterogeneous fracture energy. In this context, when considering mode II dynamic fracture problems, we are making an analogy to frictional interfaces. In fact, the onset of frictional motion is mediated by crack-like ruptures that nucleate locally and propagate dynamically along the frictional interface. To investigate the complex interaction between fracture mechanics and geometry related length scales we adopt a combined approach using numerical, theoretical, and experimental methods. The numerical simulations consider a continuum governed by the elastodynamic wave equation and allow for a displacement discontinuity (the rupture) along a predefined interface. Depending on the nature of the heterogeneity, the fracture propagation problem is solved using either the finite-element or the spectral-boundary-integral method. Here, we introduce a novel three-dimensional hybrid method, which combines the two former numerical methods to achieve superior computational performance, while allowing modeling of local complexity and heterogeneity. From the experimental side we use state-of-the-art techniques, including ultra-high-speed photography, digital image correlation, and multi-material additive manufactured polymers. We show that random local strength results in three different nucleation regimes depending on the ratio of correlation length to critical nucleation size. We show that elastic heterogeneity parallel to the fracture interface promotes transition to intersonic crack propagation in mode II cracks by means of reflected elastic waves. Finally, our experimental results of a crack propagating within a material with heterogeneous fracture energy show that the crack abruptly adjusts its speed as it enters a tougher region and allow us to derive an equation of motion of a crack at a material discontinuity.

Damage and Fracture of Heterogeneous Materials

Damage and Fracture of Heterogeneous Materials PDF Author: Leon L. Mishnaevsky Jr
Publisher: CRC Press
ISBN: 9789054106999
Category : Technology & Engineering
Languages : en
Pages : 240

Get Book Here

Book Description
This work examines problems, particularly in mining and civil engineering, related to the destruction of heterogenous materials. It details the physical mechanisms of destruction, methods of damage and fracture modelling, and the application of models to the improvement of drilling efficiency.

Multiscale Modeling of Complex Materials

Multiscale Modeling of Complex Materials PDF Author: Tomasz Sadowski
Publisher: Springer
ISBN: 3709118123
Category : Science
Languages : en
Pages : 285

Get Book Here

Book Description
The papers in this volume deal with materials science, theoretical mechanics and experimental and computational techniques at multiple scales, providing a sound base and a framework for many applications which are hitherto treated in a phenomenological sense. The basic principles are formulated of multiscale modeling strategies towards modern complex multiphase materials subjected to various types of mechanical, thermal loadings and environmental effects. The focus is on problems where mechanics is highly coupled with other concurrent physical phenomena. Attention is also focused on the historical origins of multiscale modeling and foundations of continuum mechanics currently adopted to model non-classical continua with substructure, for which internal length scales play a crucial role.

Quantitiative Phase-field Modeling of Crack Propagation in Multi-phase Materials

Quantitiative Phase-field Modeling of Crack Propagation in Multi-phase Materials PDF Author: Arezoo Emdadi
Publisher:
ISBN:
Category :
Languages : en
Pages : 133

Get Book Here

Book Description
"Research presented in this dissertation is focused on developing and validating a computational framework for study of crack propagation in polycrystalline composite ceramics capable of designing micro-architectures of phases to improve fracture toughness and damage tolerance of ZrB2-based ultra-high temperature ceramics (UHTCs). A quantitative phase-field model based on the regularized formulation of Griffith's theory is presented for crack propagation in homogenous and heterogeneous brittle materials. This model utilizes correction parameters in the total free energy functional and mechanical equilibrium equation within the crack diffusive area to ensure that the maximum stress in front of the crack tip is equal to the stress predicted by classical fracture mechanics. Also, unlike other phase-field models, the effect of material strength on crack nucleation and propagation was considered. The accuracy of the model is benchmarked in different ways and the simulation results are validated against experimental results for concrete in the form of fracture of L-shaped plates and wedge splitting tests, and for ZrB2-based laminates and fibrous monolithic composites. To study crack propagation in polycrystalline systems, a phase-field model for grain growth is coupled to the proposed model for crack propagation in multi-phase systems. Intergranular and transgranular crack propagation in ZrB2-bicrystal and polycrystalline systems in mode-I loading are studied. The significant advantages of the proposed model are revealed in multi-phase systems with considerably different material properties for different phases in which the model enables accurate predication of the crack propagation path in composites consisting of materials with significantly different strengths"--Abstract, page iv.

Computational Methods for Fracture

Computational Methods for Fracture PDF Author: Timon Rabczuk
Publisher: MDPI
ISBN: 3039216864
Category : Technology & Engineering
Languages : en
Pages : 406

Get Book Here

Book Description
This book offers a collection of 17 scientific papers about the computational modeling of fracture. Some of the manuscripts propose new computational methods and/or how to improve existing cutting edge methods for fracture. These contributions can be classified into two categories: 1. Methods which treat the crack as strong discontinuity such as peridynamics, scaled boundary elements or specific versions of the smoothed finite element methods applied to fracture and 2. Continuous approaches to fracture based on, for instance, phase field models or continuum damage mechanics. On the other hand, the book also offers a wide range of applications where state-of-the-art techniques are employed to solve challenging engineering problems such as fractures in rock, glass, concrete. Also, larger systems such as fracture in subway stations due to fire, arch dams, or concrete decks are studied.

Microstructure Sensitive Design for Performance Optimization

Microstructure Sensitive Design for Performance Optimization PDF Author: Brent L. Adams
Publisher: Butterworth-Heinemann
ISBN: 0123969891
Category : Science
Languages : en
Pages : 425

Get Book Here

Book Description
The accelerating rate at which new materials are appearing, and transforming the engineering world, only serves to emphasize the vast potential for novel material structure and related performance. Microstructure Sensitive Design for Performance Optimization (MSDPO) embodies a new methodology for systematic design of material microstructure to meet the requirements of design in optimal ways. Intended for materials engineers and researchers in industry, government and academia as well as upper level undergraduate and graduate students studying material science and engineering, MSDPO provides a novel mathematical framework that facilitates a rigorous consideration of the material microstructure as a continuous design variable in the field of engineering design. Presents new methods and techniques for analysis and optimum design of materials at the microstructure level Authors' methodology introduces spectral approaches not available in previous texts, such as the incorporation of crystallographic orientation as a variable in the design of engineered components with targeted elastic properties Numerous illustrations and examples throughout the text help readers grasp the concepts

Topology Optimization Design of Heterogeneous Materials and Structures

Topology Optimization Design of Heterogeneous Materials and Structures PDF Author: Daicong Da
Publisher: John Wiley & Sons
ISBN: 1786305585
Category : Mathematics
Languages : en
Pages : 200

Get Book Here

Book Description
This book pursues optimal design from the perspective of mechanical properties and resistance to failure caused by cracks and fatigue. The book abandons the scale separation hypothesis and takes up phase-field modeling, which is at the cutting edge of research and is of high industrial and practical relevance. Part 1 starts by testing the limits of the homogenization-based approach when the size of the representative volume element is non-negligible compared to the structure. The book then introduces a non-local homogenization scheme to take into account the strain gradient effects. Using a phase field method, Part 2 offers three significant contributions concerning optimal placement of the inclusion phases. Respectively, these contributions take into account fractures in quasi-brittle materials, interface cracks and periodic composites. The topology optimization proposed has significantly increased the fracture resistance of the composites studied.

Phase Field Modeling for Fracture with Applications to Homogeneous and Heterogeneous Materials

Phase Field Modeling for Fracture with Applications to Homogeneous and Heterogeneous Materials PDF Author: Mohammed Abdulrazzak Msekh
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The thesis presents an implementation including different applications of a variational-based approach for gradient type standard dissipative solids. Phase field model for brittle fracture is an application of the variational-based framework for gradient type solids. This model allows the prediction of different crack topologies and states. Of significant concern is the application of theoretical and numerical formulation of the phase field modeling into the commercial finite element software Abaqus in 2D and 3D. The fully coupled incremental variational formulation of phase field method is implemented by using the UEL and UMAT subroutines of Abaqus. The phase field method considerably reduces the implementation complexity of fracture problems as it removes the need for numerical tracking of discontinuities in the displacement field that are characteristic of discrete crack methods. This is accomplished by replacing the sharp discontinuities with a scalar damage phase field representing the diffuse crack topology wherein the amount of diffusion is controlled by a regularization parameter. The nonlinear coupled system consisting of the linear momentum equation and a diffusion type equation governing the phase field evolution is solved simultaneously via a Newton- Raphson approach. Post-processing of simulation results to be used as visualization module is performed via an additional UMAT subroutine implemented in the standard Abaqus viewer. In the same context, we propose a simple yet effective algorithm to initiate and propagate cracks in 2D geometries which is independent of both particular constitutive laws and specific element technology and dimension. It consists of a localization limiter in the form of the screened Poisson equation with, optionally, local mesh refinement. A staggered scheme for standard equilibrium and screened Cauchy equations is used. The remeshing part of the algorithm consists of a sequence of mesh subdivision and element erosion steps. Element subdivision is based on edge split operations using a given constitutive quantity (either damage or void fraction). Mesh smoothing makes use of edge contraction as function of a given constitutive quantity such as the principal stress or void fraction. To assess the robustness and accuracy of this algorithm, we use both quasi-brittle benchmarks and ductile tests. Furthermore, we introduce a computational approach regarding mechanical loading in microscale on an inelastically deforming composite material. The nanocomposites material of fully exfoliated clay/epoxy is shaped to predict macroscopic elastic and fracture related material parameters based on their fine-scale features. Two different configurations of polymer nanocomposites material (PNCs) have been studied. These configurations are fully bonded PNCs and PNCs with an interphase zone formation between the matrix and the clay reinforcement. The representative volume element of PNCs specimens with different clay weight contents, different aspect ratios, and different interphase zone thicknesses are generated by adopting Python scripting. Different constitutive models are employed for the matrix, the clay platelets, and the interphase zones. The brittle fracture behavior of the epoxy matrix and the interphase zones material are modeled using the phase field approach, whereas the stiff silicate clay platelets of the composite are designated as a linear elastic material. The comprehensive study investigates the elastic and fracture behavior of PNCs composites, in addition to predict Young's modulus, tensile strength, fracture toughness, surface energy dissipation, and cracks surface area in the composite for different material parameters, geometry, and interphase zones properties and thicknesses.

Proceedings of 8th GACM Colloquium on Computational Mechanics

Proceedings of 8th GACM Colloquium on Computational Mechanics PDF Author: Tobias Gleim
Publisher: kassel university press GmbH
ISBN: 3737650934
Category : Technology & Engineering
Languages : en
Pages : 493

Get Book Here

Book Description
This conference book contains papers presented at the 8th GACM Colloquium on Computational Mechanics for Young Scientists from Academia and Industry. The conference was held from August 28th – 30th, 2019 in Kassel, hosted by the Institute of Mechanics and Dynamics of the department for civil and environmental engineering and by the chair of Engineering Mechanics / Continuum Mechanics of the department for mechanical engineering of the University of Kassel. The aim of the conference is, to bring together young scientits who are engaged in academic and industrial research on Computational Mechanics and Computer Methods in Applied Sciences. It provides a plattform to present and discuss recent results from research efforts and industrial applications. In more than 150 presentations, given by young scientists, current scientific developments and advances in engineering practice in this field are presented and discussed. The contributions of the young researchers are supplemented by a poster session and plenary talks from four senior scientists from academia and industry as well as from the GACM Best PhD Award winners 2017 and 2018.