Compressibility Effect on Turbulent Flames and Detonation Initiation and Propagation

Compressibility Effect on Turbulent Flames and Detonation Initiation and Propagation PDF Author: Jonathan Sosa
Publisher:
ISBN:
Category :
Languages : en
Pages : 117

Get Book Here

Book Description
This work presents the first measurement of turbulent burning velocities of a highly-turbulent compressible standing flame induced by shock-driven turbulence in a Turbulent Shock Tube. High-speed schlieren, chemiluminescence, PIV, and dynamic pressure measurements are made to quantify flame-turbulence interaction for high levels of turbulence at elevated temperatures and pressure. Distributions of turbulent velocities, vorticity and turbulent strain are provided for regions ahead and behind the standing flame. The turbulent flame speed is directly measured for the high-Mach standing turbulent flame. From measurements of the flame turbulent speed and turbulent Mach number, transition into a non-linear compressibility regime at turbulent Mach numbers above 0.4 is confirmed, and a possible mechanism for flame generated turbulence and deflagration-to-detonation transition is established.

Compressibility Effect on Turbulent Flames and Detonation Initiation and Propagation

Compressibility Effect on Turbulent Flames and Detonation Initiation and Propagation PDF Author: Jonathan Sosa
Publisher:
ISBN:
Category :
Languages : en
Pages : 117

Get Book Here

Book Description
This work presents the first measurement of turbulent burning velocities of a highly-turbulent compressible standing flame induced by shock-driven turbulence in a Turbulent Shock Tube. High-speed schlieren, chemiluminescence, PIV, and dynamic pressure measurements are made to quantify flame-turbulence interaction for high levels of turbulence at elevated temperatures and pressure. Distributions of turbulent velocities, vorticity and turbulent strain are provided for regions ahead and behind the standing flame. The turbulent flame speed is directly measured for the high-Mach standing turbulent flame. From measurements of the flame turbulent speed and turbulent Mach number, transition into a non-linear compressibility regime at turbulent Mach numbers above 0.4 is confirmed, and a possible mechanism for flame generated turbulence and deflagration-to-detonation transition is established.

Turbulence-compressibility Dynamics of Fast Flames for Turbulence Induced Deflagration-to-detonation

Turbulence-compressibility Dynamics of Fast Flames for Turbulence Induced Deflagration-to-detonation PDF Author: Jessica Chambers
Publisher:
ISBN:
Category :
Languages : en
Pages : 76

Get Book Here

Book Description
One of the fundamental mechanisms for detonation initiation is turbulence induced deflagration-to-detonation transition (tDDT). This research experimentally explores the dynamics of highly turbulent fast flames that are characterized by extremely high turbulent flame speeds, experience increased effects of compressibility, and may develop a runaway acceleration combined with a pressure buildup that leads to tDDT. The flame dynamics and reacting flow field are characterized using simultaneous high-speed particle image velocimetry, OH* chemiluminescence, pressure measurements, and schlieren imaging. We study various regimes of fast flame propagation conditions for runaway acceleration of turbulent fast flames and effects of compressibility on the evolution of these flames. When the local measured turbulent flame speed is found to be greater than the Chapman-Jouguet deflagration speed, the flame is categorized to be at the runaway transition regime that eventually leads to a detonation.

Compressibility Mechanisms of Turbulent Flames and Detonations

Compressibility Mechanisms of Turbulent Flames and Detonations PDF Author: Hardeo Chin
Publisher:
ISBN:
Category :
Languages : en
Pages : 131

Get Book Here

Book Description
Propulsion systems are influenced by the efficiency of combustion systems. One approach to substantially improve combustion efficiency is through pressure gain combustion or detonation-based engines. Detonations exhibit attractive features such as increased stagnation pressure and rapid heat release; however, their highly unsteady and three-dimensional nature makes them difficult to characterize. In addition, the deflagration state prior to detonation is not well defined experimentally. Detonations can be achieved via the deflagration-to-detonation transition (DDT), where a deflagration that propagates on the order of 1 - 10 m/s is accelerated to a detonation that propagates on the order of 2000 m/s. The DDT process is highly dynamic and can occur through several mechanisms such as the Zeldovich reactivity-gradient mechanism where hot spots are created by Mach stem reflections, localized vorticial explosions, boundary layer effects, or turbulence. This work focuses on transient compressible flame regimes within the turbulent DDT (tDDT) process which causes a flame to undergo various burning modes. These burning modes can be categorized into four regimes: (1) slow deflagrations, (2) fast deflagrations, (3) shock-flame complex, and (4) detonation. To achieve each burning mode, turbulence levels and propagation velocities are tailored using perforated plates and various fuel-oxidizer compositions. The primary goal of this dissertation is to characterize the relationship between the turbulent flame speed (ST) and Chapman-Jouguet (CJ) deflagration speed (SCJ) using high-speed optical diagnostics in a turbulent shock tube facility. This work will: (1) further validate and classify the turbulence-compressibility characteristics associated with fast flames that lead to detonation onset in a highly turbulent environment, (2) quantify local ST for fast flames, and (3) investigate the flow field conditions of flame modes relating to the SCJ criteria, from slow deflagrations to shock-flame complexes.

Turbulent Combustion Modelling of Fast-Flames and Detonations Using Compressible LEM-LES.

Turbulent Combustion Modelling of Fast-Flames and Detonations Using Compressible LEM-LES. PDF Author: Brian McNeilly Maxwell
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Characterization of Fast Flames for Turbulence-induced Deflagration to Detonation Transition

Characterization of Fast Flames for Turbulence-induced Deflagration to Detonation Transition PDF Author: Jessica Marcella Chambers
Publisher:
ISBN:
Category :
Languages : en
Pages : 27

Get Book Here

Book Description
One of the fundamental mechanisms for detonation initiation is turbulence driven deflagration to detonation transition (TDDT). The research experimentally explores the propagation dynamics demonstrated by fast deflagrated flames interacting with highly turbulent reactants. Fast flames produce extremely high turbulent flame speeds values, increased levels of compressibility and develop a runaway mechanism that leads to TDDT. The flame structural dynamics and reacting flow field are characterized using simultaneous high-speed particle image velocimetry, chemiluminescence, and Schlieren measurements. The investigation classifies the fast flame propagation modes at various regimes. The study further examines the conditions for a turbulent fast flame at the boundary of transitioning to quasi-detonation. The evolution of the flame-compressibility interactions for this turbulent fast flame is characterized. The local measured turbulent flame speed is found to be greater than the Chapman–Jouguet deflagration flame speed which categorizes the flame to be at the spontaneous transition regime and within the deflagration-to-detonation transition runaway process.

Dynamics of Deflagrations and Reactive Systems

Dynamics of Deflagrations and Reactive Systems PDF Author: A. L. Kuhl
Publisher: AIAA
ISBN: 9781600863851
Category : Flame
Languages : en
Pages : 454

Get Book Here

Book Description


The Effects of Compressibility on the Propagation of Premixed Deflagration

The Effects of Compressibility on the Propagation of Premixed Deflagration PDF Author: Andre Fecteau
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The thesis addresses the influence of compressible effects on the stability of deflagration waves. Due to the quasi-isobaric nature of slow flames, compressible effects in laminar flames are usually neglected. Nevertheless, turbulent deflagrations may propagate at substantially higher speeds, suggesting that compressible effects may play a role in their dynamics. In the present thesis, the stability of diffusion-dominated high-speed deflagrations is addressed. The deflagration is studied in the thickened regime, hence addressing the long wavelength limit of these deflagrations. The deflagrations are modelled by the compressible reactive Navier-Stokes equations with a single-step Arrhenius reaction model. The 2D stability of the steady traveling-wave solution is studied by direct simulation. It is found that, as the flame compressibility becomes significant, not only does the growth rates of the cellular profile of the deflagration waves increase, but the traditional correlation of the burning velocity and the flame surface area become far less strong. Significant compression regions form in front of the nonlinear flames. These compression regions have been found to increase the growth rates by increasing the temperature of the unburned gas in front of the flames, as well as convecting the flame forward. The results show that the flame propagation velocity in references to the unburned gas was significantly faster than the burning velocity. The vorticity was given consideration, as the compressibility of flame increase one can expect the baroclinic source to be of greater significance. The vorticity was show to, in effect, increase as compressibility increases while unexpectedly having a stabilizing direction of rotation on the cellular structure of the flames.

Flame-generated Turbulence for Flame Acceleration and Detonation Transition

Flame-generated Turbulence for Flame Acceleration and Detonation Transition PDF Author: Rachel Hytovick
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Detonations are a supersonic mode of combustion witnessed in a variety of applications, from next-generation propulsion devices to catastrophic explosions and the formation of supernovas. Detonations are typically initiated through the deflagration to detonation transition (DDT), a detailed process where a subsonic flame undergoes rapid acceleration increasing compressibility until a hotspot forms on the flame front inciting a detonation wave to form. Due to the complex nature of the phenomena, DDT is commonly investigated in three stages -- (i) preconditioning, (ii) detonation onset, and (iii) wave propagation and stability. The research presented explores each of these stages individually, with a focus on preconditioning, to further resolve the governing mechanisms needed to initiate and sustain a detonation. More specifically, this work seeks to investigate the flow field and flame characteristics in reactions with increasing compressibility. Additionally, the research examines detonation onset and wave propagation to attain an all-encompassing concept of the DDT process. The work uses simultaneous high-speed diagnostics, consisting of particle image velocimetry (PIV), OH* chemiluminescence, schlieren and pressure measurements, to experimentally examine the preconditioning stage. For detonation onset and propagation, megahertz diagnostics (OH* chemiluminescence and schlieren) are implemented to quantitatively visualize the supersonic event. Through the comprehensive suite of diagnostics, this research deduces the role of turbulence in detonation onset to an ongoing cycle of flame generated compression that amplifies until the hotspot ignites.

Combustion Phenomena

Combustion Phenomena PDF Author: Jozef Jarosinski
Publisher: CRC Press
ISBN: 0849384095
Category : Science
Languages : en
Pages : 236

Get Book Here

Book Description
Extensively using experimental and numerical illustrations, CombustionPhenomena: Selected Mechanisms of Flame Formation, Propagation, and Extinction provides a comprehensive survey of the fundamental processes of flame formation, propagation, and extinction. Taking you through the stages of combustion, leading experts visually display, mathematically explain, and clearly theorize on important physical topics of combustion. After a historical introduction to the field, they discuss combustion chemistry, flammability limits, and spark ignition. They also study counterflow twin-flame configuration, flame in a vortex core, the propagation characteristics of edge flames, instabilities, and tulip flames. In addition, the book describes flame extinction in narrow channels, global quenching of premixed flames by turbulence, counterflow premixed flame extinction limits, the interaction of flames with fluids in rotating vessels, and turbulent flames. The final chapter explores diffusion flames as well as combustion in spark- and compression-ignition engines. It also examines the transition from deflagration to detonation, along with the detonation wave structure. With downloadable resources of images that beautifully illustrate a range of combustion phenomena, this book facilitates a practical understanding of the processes occurring in the conception, spread, and extinguishment of a flame. It will help you on your way to finding solutions to real issues encountered in transportation, power generation, industrial processes, chemical engineering, and fire and explosion hazards.

Irreversible Phenomena

Irreversible Phenomena PDF Author: Kunio Terao
Publisher: Springer Science & Business Media
ISBN: 3540499016
Category : Science
Languages : en
Pages : 412

Get Book Here

Book Description
Ideals are simple and able to be easily understood, but never exist in reality. In this book a theory based on the second law of thermodynamics and its applications are described. In thermodynamics there is a concept of an ideal gas which satisfies a mathematical formula PV = RT. This formula can appro- mately be applied to the real gas, so far as the gas has not an especially high pressure and low temperature. In connection with the second law of thermo- namics there is also a concept of reversible and irreversible processes. The reversible process is a phenomenon proceeding at an infinitely low velocity, while the irreversible process is that proceeding with a finite velocity. Such a process with an infinitely slow velocity can really never take place, and all processes observed are always irreversible, therefore, the reversible process is an ideal process, while the irreversible process is a real process. According to the first law of thermodynamics the energy increase dU of the thermodynamic system is a sum of the heat dQ added to the system and work dW done in the system. Practically, however, the mathematical formula of the law is often expressed by the equation , or some similar equations derived from this formula, is applied to many phenomena. Such formulae are, however, th- retically only applicable to phenomena proceeding at an infinitely low velocity, that is, reversible processes or ideal processes.