Comprehensive Gyrokinetic Simulation of Tokamak Turbulence at Finite Relative Gyroradius

Comprehensive Gyrokinetic Simulation of Tokamak Turbulence at Finite Relative Gyroradius PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 8

Get Book Here

Book Description
OAK B202 COMPREHENSIVE GYROKINETIC SIMULATION OF TOKAMAK TURBULENCE AT FINITE RELATIVE GYRORADIUS. A continuum global gyrokinetic code GYRO has been developed to comprehensively simulate turbulent transport in actual experimental profiles and allow direct quantitative comparisons to the experimental transport flows. GYRO not only treats the now standard ion temperature gradient (ITG) mode turbulence, but also treats trapped and passing electrons with collisions and finite beta, and all in real tokamak geometry. Most importantly the code operates at finite relative gyroradius ([rho]*) so as to treat the profile shear stabilization effects which break gyroBohm scaling. The code operates in a cyclic flux tube limit which allows only gyroBohm scaling and a noncyclic radial annulus with physical profile variation. The later requires an adaptive source to maintain equilibrium profiles. Simple ITG simulations demonstrate the broken gyroBohm scaling depends on the actual rotational velocity shear rates competing with mode growth rates, direct comprehensive simulations of the DIII-D [rho]*-scaled L-mode experiments are presented as a quantitative test of gyrokinetics and the paradigm.

Comprehensive Gyrokinetic Simulation of Tokamak Turbulence at Finite Relative Gyroradius

Comprehensive Gyrokinetic Simulation of Tokamak Turbulence at Finite Relative Gyroradius PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 8

Get Book Here

Book Description
OAK B202 COMPREHENSIVE GYROKINETIC SIMULATION OF TOKAMAK TURBULENCE AT FINITE RELATIVE GYRORADIUS. A continuum global gyrokinetic code GYRO has been developed to comprehensively simulate turbulent transport in actual experimental profiles and allow direct quantitative comparisons to the experimental transport flows. GYRO not only treats the now standard ion temperature gradient (ITG) mode turbulence, but also treats trapped and passing electrons with collisions and finite beta, and all in real tokamak geometry. Most importantly the code operates at finite relative gyroradius ([rho]*) so as to treat the profile shear stabilization effects which break gyroBohm scaling. The code operates in a cyclic flux tube limit which allows only gyroBohm scaling and a noncyclic radial annulus with physical profile variation. The later requires an adaptive source to maintain equilibrium profiles. Simple ITG simulations demonstrate the broken gyroBohm scaling depends on the actual rotational velocity shear rates competing with mode growth rates, direct comprehensive simulations of the DIII-D [rho]*-scaled L-mode experiments are presented as a quantitative test of gyrokinetics and the paradigm.

ADVANCES IN COMPREHENSIVE GYROKINETIC SIMULATIONS OF TRANSPORT IN TOKAMAKS.

ADVANCES IN COMPREHENSIVE GYROKINETIC SIMULATIONS OF TRANSPORT IN TOKAMAKS. PDF Author: R. E. WALTZ
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
A continuum global gyrokinetic code GYRO has been developed to comprehensively simulate core turbulent transport in actual experimental profiles and enable direct quantitative comparisons to the experimental transport flows. GYRO not only treats the now standard ion temperature gradient (ITG) mode turbulence, but also treats trapped and passing electrons with collisions and finite {beta}, equilibrium ExB shear stabilization, and all in real tokamak geometry. Most importantly the code operates at finite relative gyroradius ({rho}{sub *}) so as to treat the profile shear stabilization and nonlocal effects which can break gyroBohm scaling. The code operates in either a cyclic flux-tube limit (which allows only gyroBohm scaling) or globally with physical profile variation. Bohm scaling of DIII-D L-mode has been simulated with power flows matching experiment within error bars on the ion temperature gradient. Mechanisms for broken gyroBohm scaling, neoclassical ion flows embedded in turbulence, turbulent dynamos and profile corrugations, are illustrated.

Advances in Comprehensive Gyrokinetic Simulations of Transport in Tokamaks

Advances in Comprehensive Gyrokinetic Simulations of Transport in Tokamaks PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
A continuum global gyrokinetic code GYRO has been developed to comprehensively simulate core turbulent transport in actual experimental profiles and enable direct quantitative comparisons to the experimental transport flows. GYRO not only treats the now standard ion temperature gradient (ITG) mode turbulence, but also treats trapped and passing electrons with collisions and finite [beta], equilibrium ExB shear stabilization, and all in real tokamak geometry. Most importantly the code operates at finite relative gyroradius ([rho]{sub *}) so as to treat the profile shear stabilization and nonlocal effects which can break gyroBohm scaling. The code operates in either a cyclic flux-tube limit (which allows only gyroBohm scaling) or a globally with physical profile variation. Rohm scaling of DIII-D L-mode has been simulated with power flows matching experiment within error bars on the ion temperature gradient. Mechanisms for broken gyroBohm scaling, neoclassical ion flows embedded in turbulence, turbulent dynamos and profile corrugations, plasma pinches and impurity flow, and simulations at fixed flow rather than fixed gradient are illustrated and discussed.

Gyrokinetic Simulation of Global Turbulent Transport Properties in Tokamak Experiments

Gyrokinetic Simulation of Global Turbulent Transport Properties in Tokamak Experiments PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 92505

Get Book Here

Book Description
A general geometry gyro-kinetic model for particle simulation of plasma turbulence in tokamak experiments is described. It incorporates the comprehensive influence of noncircular cross section, realistic plasma profiles, plasma rotation, neoclassical (equilibrium) electric fields, and Coulomb collisions. An interesting result of global turbulence development in a shaped tokamak plasma is presented with regard to nonlinear turbulence spreading into the linearly stable region. The mutual interaction between turbulence and zonal flows in collisionless plasmas is studied with a focus on identifying possible nonlinear saturation mechanisms for zonal flows. A bursting temporal behavior with a period longer than the geodesic acoustic oscillation period is observed even in a collisionless system. Our simulation results suggest that the zonal flows can drive turbulence. However, this process is too weak to be an effective zonal flow saturation mechanism.

Magnetic Fluctuations in Gyrokinetic Simulations of Tokamak Scrape-Off Layer Turbulence

Magnetic Fluctuations in Gyrokinetic Simulations of Tokamak Scrape-Off Layer Turbulence PDF Author: Noah Roth Mandell
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Understanding turbulent transport physics in the tokamak edge and scrape-off layer (SOL) is critical to developing a successful fusion reactor. The dynamics in these regions plays a key role in achieving high fusion performance by determining the edge pedestal that suppresses turbulence in the high-confinement mode (H-mode). Additionally, the survivability of a reactor is set by the heat load to the vessel walls, making it important to understand turbulent spreading of heat as it flows along open magnetic field lines in the SOL. Large-amplitude fluctuations, magnetic X-point geometry, and plasma interactions with material walls make simulating turbulence in the edge/SOL more challenging than in the core region, necessitating specialized gyrokinetic codes. Further, the inclusion of electromagnetic effects in gyrokinetic simulations that can handle the unique challenges of the boundary plasma is critical to the understanding of phenomena such as the pedestal and edge-localized modes, for which electromagnetic dynamics are expected to be important.In this thesis, we develop the first capability to simulate electromagnetic gyrokinetic turbulence on open magnetic field lines. This is an important step towards comprehensive electromagnetic gyrokinetic simulations of the coupled edge/SOL system. By using a continuum full-f approach via an energy-conserving discontinuous Galerkin (DG) discretization scheme that avoids the Ampere cancellation problem, we show that electromagnetic fluctuations can be handled in a robust, stable, and efficient manner in the gyrokinetic module of the Gkeyll code. We then present results which roughly model the scrape-off layer of the National Spherical Torus Experiment (NSTX), and show that electromagnetic effects can affect blob dynamics and transport. We also formulate the gyrokinetic system in field-aligned coordinates for modeling realistic edge and scrape-off layer geometries in experiments. A novel DG algorithm for maintaining positivity of the distribution function while preserving conservation laws is also presented.

Gyrokinetic simulation of tokamak turbulence and transport in realistic geometry

Gyrokinetic simulation of tokamak turbulence and transport in realistic geometry PDF Author: Geoffrey Mark Furnish
Publisher:
ISBN:
Category : Tokamaks
Languages : en
Pages : 402

Get Book Here

Book Description


Full Radius Linear and Nonlinear Gyrokinetic Simulations for Tokamaks and Stellarators

Full Radius Linear and Nonlinear Gyrokinetic Simulations for Tokamaks and Stellarators PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 11

Get Book Here

Book Description


Modeling the Turbulent Momentum Transport in Tokamak Plasmas

Modeling the Turbulent Momentum Transport in Tokamak Plasmas PDF Author: Pierre Cottier
Publisher: LAP Lambert Academic Publishing
ISBN: 9783659411038
Category :
Languages : en
Pages : 128

Get Book Here

Book Description
The magnetic confinement in tokamaks is for now the most advanced way towards energy production by nuclear fusion. Both theoretical and experimental studies showed that rotation generation can increase its performance by reducing the turbulent transport in tokamak plasmas. The rotation influence on the heat and particle fluxes is studied along with the angular momentum transport with the quasi-linear gyro-kinetic eigenvalue code QuaLiKiz. For this purpose, the QuaLiKiz code is modified in order to take the plasma rotation into account and compute the angular momentum flux. It is shown that QuaLiKiz framework is able to correctly predict the angular momentum flux including the ExB shear induced residual stress as well as the influence of rotation on the heat and particle fluxes. The different contributions to the turbulent momentum flux are studied and successfully compared against both non-linear gyro-kinetic simulations and experimental data.

Fusion Nucléaire

Fusion Nucléaire PDF Author:
Publisher:
ISBN:
Category : Electronic journals
Languages : en
Pages : 714

Get Book Here

Book Description


Transport in Gyrokinetic Tokamaks

Transport in Gyrokinetic Tokamaks PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 45

Get Book Here

Book Description
A comprehensive study of transport in full-volume gyrokinetic (gk) simulations of ion temperature gradient driven turbulence in core tokamak plasmas is presented. Though this g̀̀yrokinetic tokamak ̀̀is much simpler than experimental tokamaks, such simplicity is an asset, because a dependable nonlinear transport theory for such systems should be more attainable. Toward this end, we pursue two related lines of inquiry. (1) We study the scalings of gk tokamaks with respect to important system parameters. In contrast to real machines, the scalings of larger gk systems (a/?{sub s} ≳ 64) with minor radius, with current, and with a/?{sub s} are roughly consistent with the approximate theoretical expectations for electrostatic turbulent transport which exist as yet. Smaller systems manifest quite different scalings, which aids in interpreting differing mass-scaling results in other work. (2) With the goal of developing a first-principles theory of gk transport, we use the gk data to infer the underlying transport physics. The data indicate that, of the many modes k present in the simulation, only a modest number (N{sub k} ∼ 10) of k dominate the transport, and for each, only a handful (N{sub p} ∼ 5) of couplings to other modes p appear to be significant, implying that the essential transport physics may be described by a far simpler system than would have been expected on the basis of earlier nonlinear theory alone. Part of this analysis is the inference of the coupling coefficients M{sub kpq} governing the nonlinear mode interactions, whose measurement from tokamak simulation data is presented here for the first time.