Author: Francisco Marcellán
Publisher: Universidad Almería
ISBN: 9788482400464
Category : Mathematics
Languages : en
Pages : 194
Book Description
This book provides an up-to-date account of research in Approximation Theory and Complex Analysis, areas which are the subject of recent exciting developments.The level of presentation should be suitable for anyone with a good knowledge of analysis, including scientists with a mathematical background. The volume contains both research papers and surveys, presented by specialists in the field. The areas discussed are: Orthogonal Polynomials (with respect to classical and Sobolev inner products), Approximation in Several Complex Variables, Korovkin-type Theorems, Potential Theory, Ratinal Approximation and Linear Ordinary Differential Equations.
Complex Methods in Approximation Theory
Author: Francisco Marcellán
Publisher: Universidad Almería
ISBN: 9788482400464
Category : Mathematics
Languages : en
Pages : 194
Book Description
This book provides an up-to-date account of research in Approximation Theory and Complex Analysis, areas which are the subject of recent exciting developments.The level of presentation should be suitable for anyone with a good knowledge of analysis, including scientists with a mathematical background. The volume contains both research papers and surveys, presented by specialists in the field. The areas discussed are: Orthogonal Polynomials (with respect to classical and Sobolev inner products), Approximation in Several Complex Variables, Korovkin-type Theorems, Potential Theory, Ratinal Approximation and Linear Ordinary Differential Equations.
Publisher: Universidad Almería
ISBN: 9788482400464
Category : Mathematics
Languages : en
Pages : 194
Book Description
This book provides an up-to-date account of research in Approximation Theory and Complex Analysis, areas which are the subject of recent exciting developments.The level of presentation should be suitable for anyone with a good knowledge of analysis, including scientists with a mathematical background. The volume contains both research papers and surveys, presented by specialists in the field. The areas discussed are: Orthogonal Polynomials (with respect to classical and Sobolev inner products), Approximation in Several Complex Variables, Korovkin-type Theorems, Potential Theory, Ratinal Approximation and Linear Ordinary Differential Equations.
Approximation Theory and Numerical Methods
Author: G. A. Watson
Publisher: John Wiley & Sons
ISBN:
Category : Mathematics
Languages : en
Pages : 248
Book Description
Publisher: John Wiley & Sons
ISBN:
Category : Mathematics
Languages : en
Pages : 248
Book Description
Fundamentals of Approximation Theory
Author: Hrushikesh Narhar Mhaskar
Publisher: CRC Press
ISBN: 9780849309397
Category : Mathematics
Languages : en
Pages : 580
Book Description
The field of approximation theory has become so vast that it intersects with every other branch of analysis and plays an increasingly important role in applications in the applied sciences and engineering. Fundamentals of Approximation Theory presents a systematic, in-depth treatment of some basic topics in approximation theory designed to emphasize the rich connections of the subject with other areas of study. With an approach that moves smoothly from the very concrete to more and more abstract levels, this text provides an outstanding blend of classical and abstract topics. The first five chapters present the core of information that readers need to begin research in this domain. The final three chapters the authors devote to special topics-splined functions, orthogonal polynomials, and best approximation in normed linear spaces- that illustrate how the core material applies in other contexts and expose readers to the use of complex analytic methods in approximation theory. Each chapter contains problems of varying difficulty, including some drawn from contemporary research. Perfect for an introductory graduate-level class, Fundamentals of Approximation Theory also contains enough advanced material to serve more specialized courses at the doctoral level and to interest scientists and engineers.
Publisher: CRC Press
ISBN: 9780849309397
Category : Mathematics
Languages : en
Pages : 580
Book Description
The field of approximation theory has become so vast that it intersects with every other branch of analysis and plays an increasingly important role in applications in the applied sciences and engineering. Fundamentals of Approximation Theory presents a systematic, in-depth treatment of some basic topics in approximation theory designed to emphasize the rich connections of the subject with other areas of study. With an approach that moves smoothly from the very concrete to more and more abstract levels, this text provides an outstanding blend of classical and abstract topics. The first five chapters present the core of information that readers need to begin research in this domain. The final three chapters the authors devote to special topics-splined functions, orthogonal polynomials, and best approximation in normed linear spaces- that illustrate how the core material applies in other contexts and expose readers to the use of complex analytic methods in approximation theory. Each chapter contains problems of varying difficulty, including some drawn from contemporary research. Perfect for an introductory graduate-level class, Fundamentals of Approximation Theory also contains enough advanced material to serve more specialized courses at the doctoral level and to interest scientists and engineers.
Approximation Theory and Approximation Practice, Extended Edition
Author: Lloyd N. Trefethen
Publisher: SIAM
ISBN: 1611975948
Category : Mathematics
Languages : en
Pages : 377
Book Description
This is a textbook on classical polynomial and rational approximation theory for the twenty-first century. Aimed at advanced undergraduates and graduate students across all of applied mathematics, it uses MATLAB to teach the fields most important ideas and results. Approximation Theory and Approximation Practice, Extended Edition differs fundamentally from other works on approximation theory in a number of ways: its emphasis is on topics close to numerical algorithms; concepts are illustrated with Chebfun; and each chapter is a PUBLISHable MATLAB M-file, available online. The book centers on theorems and methods for analytic functions, which appear so often in applications, rather than on functions at the edge of discontinuity with their seductive theoretical challenges. Original sources are cited rather than textbooks, and each item in the bibliography is accompanied by an editorial comment. In addition, each chapter has a collection of exercises, which span a wide range from mathematical theory to Chebfun-based numerical experimentation. This textbook is appropriate for advanced undergraduate or graduate students who have an understanding of numerical analysis and complex analysis. It is also appropriate for seasoned mathematicians who use MATLAB.
Publisher: SIAM
ISBN: 1611975948
Category : Mathematics
Languages : en
Pages : 377
Book Description
This is a textbook on classical polynomial and rational approximation theory for the twenty-first century. Aimed at advanced undergraduates and graduate students across all of applied mathematics, it uses MATLAB to teach the fields most important ideas and results. Approximation Theory and Approximation Practice, Extended Edition differs fundamentally from other works on approximation theory in a number of ways: its emphasis is on topics close to numerical algorithms; concepts are illustrated with Chebfun; and each chapter is a PUBLISHable MATLAB M-file, available online. The book centers on theorems and methods for analytic functions, which appear so often in applications, rather than on functions at the edge of discontinuity with their seductive theoretical challenges. Original sources are cited rather than textbooks, and each item in the bibliography is accompanied by an editorial comment. In addition, each chapter has a collection of exercises, which span a wide range from mathematical theory to Chebfun-based numerical experimentation. This textbook is appropriate for advanced undergraduate or graduate students who have an understanding of numerical analysis and complex analysis. It is also appropriate for seasoned mathematicians who use MATLAB.
Approximation Theory and Methods
Author: M. J. D. Powell
Publisher: Cambridge University Press
ISBN: 9780521295147
Category : Mathematics
Languages : en
Pages : 356
Book Description
Most functions that occur in mathematics cannot be used directly in computer calculations. Instead they are approximated by manageable functions such as polynomials and piecewise polynomials. The general theory of the subject and its application to polynomial approximation are classical, but piecewise polynomials have become far more useful during the last twenty years. Thus many important theoretical properties have been found recently and many new techniques for the automatic calculation of approximations to prescribed accuracy have been developed. This book gives a thorough and coherent introduction to the theory that is the basis of current approximation methods. Professor Powell describes and analyses the main techniques of calculation supplying sufficient motivation throughout the book to make it accessible to scientists and engineers who require approximation methods for practical needs. Because the book is based on a course of lectures to third-year undergraduates in mathematics at Cambridge University, sufficient attention is given to theory to make it highly suitable as a mathematical textbook at undergraduate or postgraduate level.
Publisher: Cambridge University Press
ISBN: 9780521295147
Category : Mathematics
Languages : en
Pages : 356
Book Description
Most functions that occur in mathematics cannot be used directly in computer calculations. Instead they are approximated by manageable functions such as polynomials and piecewise polynomials. The general theory of the subject and its application to polynomial approximation are classical, but piecewise polynomials have become far more useful during the last twenty years. Thus many important theoretical properties have been found recently and many new techniques for the automatic calculation of approximations to prescribed accuracy have been developed. This book gives a thorough and coherent introduction to the theory that is the basis of current approximation methods. Professor Powell describes and analyses the main techniques of calculation supplying sufficient motivation throughout the book to make it accessible to scientists and engineers who require approximation methods for practical needs. Because the book is based on a course of lectures to third-year undergraduates in mathematics at Cambridge University, sufficient attention is given to theory to make it highly suitable as a mathematical textbook at undergraduate or postgraduate level.
Model Reduction and Approximation
Author: Peter Benner
Publisher: SIAM
ISBN: 161197481X
Category : Science
Languages : en
Pages : 421
Book Description
Many physical, chemical, biomedical, and technical processes can be described by partial differential equations or dynamical systems. In spite of increasing computational capacities, many problems are of such high complexity that they are solvable only with severe simplifications, and the design of efficient numerical schemes remains a central research challenge. This book presents a tutorial introduction to recent developments in mathematical methods for model reduction and approximation of complex systems. Model Reduction and Approximation: Theory and Algorithms contains three parts that cover (I) sampling-based methods, such as the reduced basis method and proper orthogonal decomposition, (II) approximation of high-dimensional problems by low-rank tensor techniques, and (III) system-theoretic methods, such as balanced truncation, interpolatory methods, and the Loewner framework. It is tutorial in nature, giving an accessible introduction to state-of-the-art model reduction and approximation methods. It also covers a wide range of methods drawn from typically distinct communities (sampling based, tensor based, system-theoretic).?? This book is intended for researchers interested in model reduction and approximation, particularly graduate students and young researchers.
Publisher: SIAM
ISBN: 161197481X
Category : Science
Languages : en
Pages : 421
Book Description
Many physical, chemical, biomedical, and technical processes can be described by partial differential equations or dynamical systems. In spite of increasing computational capacities, many problems are of such high complexity that they are solvable only with severe simplifications, and the design of efficient numerical schemes remains a central research challenge. This book presents a tutorial introduction to recent developments in mathematical methods for model reduction and approximation of complex systems. Model Reduction and Approximation: Theory and Algorithms contains three parts that cover (I) sampling-based methods, such as the reduced basis method and proper orthogonal decomposition, (II) approximation of high-dimensional problems by low-rank tensor techniques, and (III) system-theoretic methods, such as balanced truncation, interpolatory methods, and the Loewner framework. It is tutorial in nature, giving an accessible introduction to state-of-the-art model reduction and approximation methods. It also covers a wide range of methods drawn from typically distinct communities (sampling based, tensor based, system-theoretic).?? This book is intended for researchers interested in model reduction and approximation, particularly graduate students and young researchers.
Approximation Theory
Author: George A. Anastassiou
Publisher: Springer Science & Business Media
ISBN: 9780817641511
Category : Mathematics
Languages : en
Pages : 554
Book Description
We study in Part I of this monograph the computational aspect of almost all moduli of continuity over wide classes of functions exploiting some of their convexity properties. To our knowledge it is the first time the entire calculus of moduli of smoothness has been included in a book. We then present numerous applications of Approximation Theory, giving exact val ues of errors in explicit forms. The K-functional method is systematically avoided since it produces nonexplicit constants. All other related books so far have allocated very little space to the computational aspect of moduli of smoothness. In Part II, we study/examine the Global Smoothness Preservation Prop erty (GSPP) for almost all known linear approximation operators of ap proximation theory including: trigonometric operators and algebraic in terpolation operators of Lagrange, Hermite-Fejer and Shepard type, also operators of stochastic type, convolution type, wavelet type integral opera tors and singular integral operators, etc. We present also a sufficient general theory for GSPP to hold true. We provide a great variety of applications of GSPP to Approximation Theory and many other fields of mathemat ics such as Functional analysis, and outside of mathematics, fields such as computer-aided geometric design (CAGD). Most of the time GSPP meth ods are optimal. Various moduli of smoothness are intensively involved in Part II. Therefore, methods from Part I can be used to calculate exactly the error of global smoothness preservation. It is the first time in the literature that a book has studied GSPP.
Publisher: Springer Science & Business Media
ISBN: 9780817641511
Category : Mathematics
Languages : en
Pages : 554
Book Description
We study in Part I of this monograph the computational aspect of almost all moduli of continuity over wide classes of functions exploiting some of their convexity properties. To our knowledge it is the first time the entire calculus of moduli of smoothness has been included in a book. We then present numerous applications of Approximation Theory, giving exact val ues of errors in explicit forms. The K-functional method is systematically avoided since it produces nonexplicit constants. All other related books so far have allocated very little space to the computational aspect of moduli of smoothness. In Part II, we study/examine the Global Smoothness Preservation Prop erty (GSPP) for almost all known linear approximation operators of ap proximation theory including: trigonometric operators and algebraic in terpolation operators of Lagrange, Hermite-Fejer and Shepard type, also operators of stochastic type, convolution type, wavelet type integral opera tors and singular integral operators, etc. We present also a sufficient general theory for GSPP to hold true. We provide a great variety of applications of GSPP to Approximation Theory and many other fields of mathemat ics such as Functional analysis, and outside of mathematics, fields such as computer-aided geometric design (CAGD). Most of the time GSPP meth ods are optimal. Various moduli of smoothness are intensively involved in Part II. Therefore, methods from Part I can be used to calculate exactly the error of global smoothness preservation. It is the first time in the literature that a book has studied GSPP.
Convergence Estimates in Approximation Theory
Author: Vijay Gupta
Publisher: Springer Science & Business Media
ISBN: 3319027654
Category : Mathematics
Languages : en
Pages : 368
Book Description
The study of linear positive operators is an area of mathematical studies with significant relevance to studies of computer-aided geometric design, numerical analysis, and differential equations. This book focuses on the convergence of linear positive operators in real and complex domains. The theoretical aspects of these operators have been an active area of research over the past few decades. In this volume, authors Gupta and Agarwal explore new and more efficient methods of applying this research to studies in Optimization and Analysis. The text will be of interest to upper-level students seeking an introduction to the field and to researchers developing innovative approaches.
Publisher: Springer Science & Business Media
ISBN: 3319027654
Category : Mathematics
Languages : en
Pages : 368
Book Description
The study of linear positive operators is an area of mathematical studies with significant relevance to studies of computer-aided geometric design, numerical analysis, and differential equations. This book focuses on the convergence of linear positive operators in real and complex domains. The theoretical aspects of these operators have been an active area of research over the past few decades. In this volume, authors Gupta and Agarwal explore new and more efficient methods of applying this research to studies in Optimization and Analysis. The text will be of interest to upper-level students seeking an introduction to the field and to researchers developing innovative approaches.
Shape-Preserving Approximation by Real and Complex Polynomials
Author: Sorin G. Gal
Publisher: Springer Science & Business Media
ISBN: 0817647031
Category : Mathematics
Languages : en
Pages : 359
Book Description
First comprehensive treatment in book form of shape-preserving approximation by real or complex polynomials in one or several variables Of interest to grad students and researchers in approximation theory, mathematical analysis, numerical analysis, Computer Aided Geometric Design, robotics, data fitting, chemistry, fluid mechanics, and engineering Contains many open problems to spur future research Rich and updated bibliography
Publisher: Springer Science & Business Media
ISBN: 0817647031
Category : Mathematics
Languages : en
Pages : 359
Book Description
First comprehensive treatment in book form of shape-preserving approximation by real or complex polynomials in one or several variables Of interest to grad students and researchers in approximation theory, mathematical analysis, numerical analysis, Computer Aided Geometric Design, robotics, data fitting, chemistry, fluid mechanics, and engineering Contains many open problems to spur future research Rich and updated bibliography
Computer Aided Geometric Design
Author: Robert E. Barnhill
Publisher: Academic Press
ISBN: 1483268489
Category : Technology & Engineering
Languages : en
Pages : 337
Book Description
Computer Aided Geometric Design covers the proceedings of the First International Conference on Computer Aided Geometric Design, held at the University of Utah on March 18-21, 1974. This book is composed of 15 chapters and starts with reviews of the properties of surface patch equation and the use of computers in geometrical design. The next chapters deal with the principles of smooth interpolation over triangles and without twist constraints, as well as the graphical representation of surfaces over triangles and rectangles. These topics are followed by discussions of the B-spline curves and surfaces; mathematical and practical possibilities of UNISURF; nonlinear splines; and some piecewise polynomial alternatives to splines under tension. Other chapters explore the smooth parametric surfaces, the space curve as a folded edge, and the interactive computer graphics application of the parametric bi-cubic surface to engineering design problems. The final chapters look into the three-dimensional human-machine communication and a class of local interpolating splines. This book will prove useful to design engineers.
Publisher: Academic Press
ISBN: 1483268489
Category : Technology & Engineering
Languages : en
Pages : 337
Book Description
Computer Aided Geometric Design covers the proceedings of the First International Conference on Computer Aided Geometric Design, held at the University of Utah on March 18-21, 1974. This book is composed of 15 chapters and starts with reviews of the properties of surface patch equation and the use of computers in geometrical design. The next chapters deal with the principles of smooth interpolation over triangles and without twist constraints, as well as the graphical representation of surfaces over triangles and rectangles. These topics are followed by discussions of the B-spline curves and surfaces; mathematical and practical possibilities of UNISURF; nonlinear splines; and some piecewise polynomial alternatives to splines under tension. Other chapters explore the smooth parametric surfaces, the space curve as a folded edge, and the interactive computer graphics application of the parametric bi-cubic surface to engineering design problems. The final chapters look into the three-dimensional human-machine communication and a class of local interpolating splines. This book will prove useful to design engineers.