Combustion Models of Turbulent Diffusion Flames

Combustion Models of Turbulent Diffusion Flames PDF Author: F. Jia
Publisher:
ISBN: 9781899991082
Category : Applied mathematics
Languages : en
Pages :

Get Book Here

Book Description

Combustion Models of Turbulent Diffusion Flames

Combustion Models of Turbulent Diffusion Flames PDF Author: F. Jia
Publisher:
ISBN: 9781899991082
Category : Applied mathematics
Languages : en
Pages :

Get Book Here

Book Description


Turbulent Combustion Modeling

Turbulent Combustion Modeling PDF Author: Tarek Echekki
Publisher: Springer Science & Business Media
ISBN: 9400704127
Category : Technology & Engineering
Languages : en
Pages : 496

Get Book Here

Book Description
Turbulent combustion sits at the interface of two important nonlinear, multiscale phenomena: chemistry and turbulence. Its study is extremely timely in view of the need to develop new combustion technologies in order to address challenges associated with climate change, energy source uncertainty, and air pollution. Despite the fact that modeling of turbulent combustion is a subject that has been researched for a number of years, its complexity implies that key issues are still eluding, and a theoretical description that is accurate enough to make turbulent combustion models rigorous and quantitative for industrial use is still lacking. In this book, prominent experts review most of the available approaches in modeling turbulent combustion, with particular focus on the exploding increase in computational resources that has allowed the simulation of increasingly detailed phenomena. The relevant algorithms are presented, the theoretical methods are explained, and various application examples are given. The book is intended for a relatively broad audience, including seasoned researchers and graduate students in engineering, applied mathematics and computational science, engine designers and computational fluid dynamics (CFD) practitioners, scientists at funding agencies, and anyone wishing to understand the state-of-the-art and the future directions of this scientifically challenging and practically important field.

Modeling and Simulation of Turbulent Combustion

Modeling and Simulation of Turbulent Combustion PDF Author: Santanu De
Publisher: Springer
ISBN: 9811074100
Category : Science
Languages : en
Pages : 663

Get Book Here

Book Description
This book presents a comprehensive review of state-of-the-art models for turbulent combustion, with special emphasis on the theory, development and applications of combustion models in practical combustion systems. It simplifies the complex multi-scale and nonlinear interaction between chemistry and turbulence to allow a broader audience to understand the modeling and numerical simulations of turbulent combustion, which remains at the forefront of research due to its industrial relevance. Further, the book provides a holistic view by covering a diverse range of basic and advanced topics—from the fundamentals of turbulence–chemistry interactions, role of high-performance computing in combustion simulations, and optimization and reduction techniques for chemical kinetics, to state-of-the-art modeling strategies for turbulent premixed and nonpremixed combustion and their applications in engineering contexts.

Modelling Detailed-Chemistry Effects on Turbulent Diffusion Flames Using a Parallel Solution-Adaptive Scheme

Modelling Detailed-Chemistry Effects on Turbulent Diffusion Flames Using a Parallel Solution-Adaptive Scheme PDF Author: Pradeep Kumar Jha
Publisher:
ISBN: 9780494782439
Category :
Languages : en
Pages : 374

Get Book Here

Book Description
Capturing the effects of detailed-chemistry on turbulent combustion processes is a central challenge faced by the numerical combustion community. However, the inherent complexity and non-linear nature of both turbulence and chemistry require that combustion models rely heavily on engineering approximations to remain computationally tractable. This thesis proposes a computationally efficient algorithm for modelling detailed-chemistry effects in turbulent diffusion flames and numerically predicting the associated flame properties. The cornerstone of this combustion modelling tool is the use of parallel Adaptive Mesh Refinement (AMR) scheme with the recently proposed Flame Prolongation of Intrinsic low-dimensional manifold (FPI) tabulated-chemistry approach for modelling complex chemistry. The effect of turbulence on the mean chemistry is incorporated using a Presumed Conditional Moment (PCM) approach based on a beta-probability density function (PDF). The two-equation k-w turbulence model is used for modelling the effects of the unresolved turbulence on the mean flow field. The finite-rate of methane-air combustion is represented here by using the GRI-Mech 3.0 scheme. This detailed mechanism is used to build the FPI tables. A state of the art numerical scheme based on a parallel block-based solution-adaptive algorithm has been developed to solve the Favre-averaged Navier-Stokes (FANS) and other governing partial-differential equations using a second-order accurate, fully-coupled finite-volume formulation on body-fitted, multi-block, quadrilateral/hexahedral mesh for two-dimensional and three-dimensional flow geometries, respectively. A standard fourth-order Runge-Kutta time-marching scheme is used for time-accurate temporal discretizations. Numerical predictions of three different diffusion flames configurations are considered in the present work: a laminar counter-flow flame; a laminar co-flow diffusion flame; and a Sydney bluff-body turbulent reacting flow. Comparisons are made between the predicted results of the present FPI scheme and Steady Laminar Flamelet Model (SLFM) approach for diffusion flames. The effects of grid resolution on the predicted overall flame solutions are also assessed. Other non-reacting flows have also been considered to further validate other aspects of the numerical scheme. The present schemes predict results which are in good agreement with published experimental results and reduces the computational cost involved in modelling turbulent diffusion flames significantly, both in terms of storage and processing time.

Turbulent Combustion

Turbulent Combustion PDF Author: Norbert Peters
Publisher: Cambridge University Press
ISBN: 1139428063
Category : Science
Languages : en
Pages : 322

Get Book Here

Book Description
The combustion of fossil fuels remains a key technology for the foreseeable future. It is therefore important that we understand the mechanisms of combustion and, in particular, the role of turbulence within this process. Combustion always takes place within a turbulent flow field for two reasons: turbulence increases the mixing process and enhances combustion, but at the same time combustion releases heat which generates flow instability through buoyancy, thus enhancing the transition to turbulence. The four chapters of this book present a thorough introduction to the field of turbulent combustion. After an overview of modeling approaches, the three remaining chapters consider the three distinct cases of premixed, non-premixed, and partially premixed combustion, respectively. This book will be of value to researchers and students of engineering and applied mathematics by demonstrating the current theories of turbulent combustion within a unified presentation of the field.

Numerical Prediction of Turbulent Diffusion Flames Formed by Cylindrical Tube Injector

Numerical Prediction of Turbulent Diffusion Flames Formed by Cylindrical Tube Injector PDF Author: Ali S. Kheireddine
Publisher:
ISBN:
Category : Burges equation
Languages : en
Pages : 346

Get Book Here

Book Description


Evaluation of Closure Models of Turbulent Diffusion Flames

Evaluation of Closure Models of Turbulent Diffusion Flames PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Modeling methods applied in the field of turbulent combustion were investigated via Direct Numerical Simulations (DNS) and theoretical analysis with an emphasis on subgrid-scale modeling to be applied in Large Eddy Simulations (LES). The DNS results supported the conditional moment closure approximation, refuted the common modeling of differential diffusion effects, raised a suggestion for valid modeling of differential diffusion, resolved outstanding theoretical issues regarding mixing layers, and demonstrated the need for including flamelet/flamelet interactions in the modeling of extinction/reignition events. The DNS methodology was reconfirmed by comparison to the classical laboratory results of Comte-Bellot and Corrsin. A new subgrid-scale model (Large Eddy Laminar Flamelet; LELFM, a quasi-steady model) was established and applied to the prediction of laboratory results in a simulated mixing layer with nitric oxide/ozone reaction. The results support the modeling. New results were derived and confirmed via DNS regarding the subgrid-scale modeling of the filtered mixture fraction, its second moment and dissipation rate.

Evaluation of Closure Models of Turbulent Diffusion Flames

Evaluation of Closure Models of Turbulent Diffusion Flames PDF Author: G. Kosaly
Publisher:
ISBN:
Category : Flame
Languages : en
Pages : 10

Get Book Here

Book Description


Turbulent Premixed Flames

Turbulent Premixed Flames PDF Author: Nedunchezhian Swaminathan
Publisher: Cambridge University Press
ISBN: 1139498584
Category : Technology & Engineering
Languages : en
Pages : 447

Get Book Here

Book Description
A work on turbulent premixed combustion is important because of increased concern about the environmental impact of combustion and the search for new combustion concepts and technologies. An improved understanding of lean fuel turbulent premixed flames must play a central role in the fundamental science of these new concepts. Lean premixed flames have the potential to offer ultra-low emission levels, but they are notoriously susceptible to combustion oscillations. Thus, sophisticated control measures are inevitably required. The editors' intent is to set out the modeling aspects in the field of turbulent premixed combustion. Good progress has been made on this topic, and this cohesive volume contains contributions from international experts on various subtopics of the lean premixed flame problem.

Evaluation of Closure Models of Turbulent Diffusion Flames

Evaluation of Closure Models of Turbulent Diffusion Flames PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Modeling methods applied in the field of turbulent combustion were investigated via Direct Numerical Simulations (DNS) and theoretical analysis with an emphasis on subgrid-scale modeling to be applied in Large Eddy Simulations (LES). The DNS results supported the conditional moment closure approximation, refuted the common modeling of differential diffusion effects, raised a suggestion for valid modeling of differential diffusion, resolved outstanding theoretical issues regarding mixing layers, and demonstrated the need for including flamelet/flamelet interactions in the modeling of extinction/reignition events. The DNS methodology was reconfirmed by comparison to the classical laboratory results of Comte-Bellot and Corrsin. A new subgrid-scale model (Large Eddy Laminar Flamelet; LELFM, a quasi-steady model) was established and applied to the prediction of laboratory results in a simulated mixing layer with nitric oxide/ozone reaction. The results support the modeling. New results were derived and confirmed via DNS regarding the subgrid-scale modeling of the filtered mixture fraction, its second moment and dissipation rate.