Combinatorics and Complexity of Partition Functions

Combinatorics and Complexity of Partition Functions PDF Author: Alexander Barvinok
Publisher: Springer
ISBN: 3319518291
Category : Mathematics
Languages : en
Pages : 304

Get Book Here

Book Description
Partition functions arise in combinatorics and related problems of statistical physics as they encode in a succinct way the combinatorial structure of complicated systems. The main focus of the book is on efficient ways to compute (approximate) various partition functions, such as permanents, hafnians and their higher-dimensional versions, graph and hypergraph matching polynomials, the independence polynomial of a graph and partition functions enumerating 0-1 and integer points in polyhedra, which allows one to make algorithmic advances in otherwise intractable problems. The book unifies various, often quite recent, results scattered in the literature, concentrating on the three main approaches: scaling, interpolation and correlation decay. The prerequisites include moderate amounts of real and complex analysis and linear algebra, making the book accessible to advanced math and physics undergraduates.

Combinatorics and Complexity of Partition Functions

Combinatorics and Complexity of Partition Functions PDF Author: Alexander Barvinok
Publisher: Springer
ISBN: 3319518291
Category : Mathematics
Languages : en
Pages : 304

Get Book Here

Book Description
Partition functions arise in combinatorics and related problems of statistical physics as they encode in a succinct way the combinatorial structure of complicated systems. The main focus of the book is on efficient ways to compute (approximate) various partition functions, such as permanents, hafnians and their higher-dimensional versions, graph and hypergraph matching polynomials, the independence polynomial of a graph and partition functions enumerating 0-1 and integer points in polyhedra, which allows one to make algorithmic advances in otherwise intractable problems. The book unifies various, often quite recent, results scattered in the literature, concentrating on the three main approaches: scaling, interpolation and correlation decay. The prerequisites include moderate amounts of real and complex analysis and linear algebra, making the book accessible to advanced math and physics undergraduates.

Analytic Combinatorics

Analytic Combinatorics PDF Author: Philippe Flajolet
Publisher: Cambridge University Press
ISBN: 1139477161
Category : Mathematics
Languages : en
Pages : 825

Get Book Here

Book Description
Analytic combinatorics aims to enable precise quantitative predictions of the properties of large combinatorial structures. The theory has emerged over recent decades as essential both for the analysis of algorithms and for the study of scientific models in many disciplines, including probability theory, statistical physics, computational biology, and information theory. With a careful combination of symbolic enumeration methods and complex analysis, drawing heavily on generating functions, results of sweeping generality emerge that can be applied in particular to fundamental structures such as permutations, sequences, strings, walks, paths, trees, graphs and maps. This account is the definitive treatment of the topic. The authors give full coverage of the underlying mathematics and a thorough treatment of both classical and modern applications of the theory. The text is complemented with exercises, examples, appendices and notes to aid understanding. The book can be used for an advanced undergraduate or a graduate course, or for self-study.

A Course in Convexity

A Course in Convexity PDF Author: Alexander Barvinok
Publisher: American Mathematical Soc.
ISBN: 0821829688
Category : Mathematics
Languages : en
Pages : 378

Get Book Here

Book Description
Convexity is a simple idea that manifests itself in a surprising variety of places. This fertile field has an immensely rich structure and numerous applications. Barvinok demonstrates that simplicity, intuitive appeal, and the universality of applications make teaching (and learning) convexity a gratifying experience. The book will benefit both teacher and student: It is easy to understand, entertaining to the reader, and includes many exercises that vary in degree of difficulty. Overall, the author demonstrates the power of a few simple unifying principles in a variety of pure and applied problems. The prerequisites are minimal amounts of linear algebra, analysis, and elementary topology, plus basic computational skills. Portions of the book could be used by advanced undergraduates. As a whole, it is designed for graduate students interested in mathematical methods, computer science, electrical engineering, and operations research. The book will also be of interest to research mathematicians, who will find some results that are recent, some that are new, and many known results that are discussed from a new perspective.

A Course in Combinatorics

A Course in Combinatorics PDF Author: J. H. van Lint
Publisher: Cambridge University Press
ISBN: 9780521006019
Category : Mathematics
Languages : en
Pages : 620

Get Book Here

Book Description
This is the second edition of a popular book on combinatorics, a subject dealing with ways of arranging and distributing objects, and which involves ideas from geometry, algebra and analysis. The breadth of the theory is matched by that of its applications, which include topics as diverse as codes, circuit design and algorithm complexity. It has thus become essential for workers in many scientific fields to have some familiarity with the subject. The authors have tried to be as comprehensive as possible, dealing in a unified manner with, for example, graph theory, extremal problems, designs, colorings and codes. The depth and breadth of the coverage make the book a unique guide to the whole of the subject. The book is ideal for courses on combinatorical mathematics at the advanced undergraduate or beginning graduate level. Working mathematicians and scientists will also find it a valuable introduction and reference.

Model Theoretic Methods in Finite Combinatorics

Model Theoretic Methods in Finite Combinatorics PDF Author: Martin Grohe
Publisher: American Mathematical Soc.
ISBN: 0821849433
Category : Mathematics
Languages : en
Pages : 529

Get Book Here

Book Description
This volume contains the proceedings of the AMS-ASL Special Session on Model Theoretic Methods in Finite Combinatorics, held January 5-8, 2009, in Washington, DC. Over the last 20 years, various new connections between model theory and finite combinatorics emerged. The best known of these are in the area of 0-1 laws, but in recent years other very promising interactions between model theory and combinatorics have been developed in areas such as extremal combinatorics and graph limits, graph polynomials, homomorphism functions and related counting functions, and discrete algorithms, touching the boundaries of computer science and statistical physics. This volume highlights some of the main results, techniques, and research directions of the area. Topics covered in this volume include recent developments on 0-1 laws and their variations, counting functions defined by homomorphisms and graph polynomials and their relation to logic, recurrences and spectra, the logical complexity of graphs, algorithmic meta theorems based on logic, universal and homogeneous structures, and logical aspects of Ramsey theory.

Analytic Combinatorics in Several Variables

Analytic Combinatorics in Several Variables PDF Author: Robin Pemantle
Publisher: Cambridge University Press
ISBN: 1107031575
Category : Mathematics
Languages : en
Pages : 395

Get Book Here

Book Description
Aimed at graduate students and researchers in enumerative combinatorics, this book is the first to treat the analytic aspects of combinatorial enumeration from a multivariate perspective.

Handbook of Enumerative Combinatorics

Handbook of Enumerative Combinatorics PDF Author: Miklos Bona
Publisher: CRC Press
ISBN: 1482220865
Category : Mathematics
Languages : en
Pages : 1073

Get Book Here

Book Description
Presenting the state of the art, the Handbook of Enumerative Combinatorics brings together the work of today's most prominent researchers. The contributors survey the methods of combinatorial enumeration along with the most frequent applications of these methods.This important new work is edited by Miklos Bona of the University of Florida where he

Computational Complexity

Computational Complexity PDF Author: Sanjeev Arora
Publisher: Cambridge University Press
ISBN: 0521424267
Category : Computers
Languages : en
Pages : 609

Get Book Here

Book Description
New and classical results in computational complexity, including interactive proofs, PCP, derandomization, and quantum computation. Ideal for graduate students.

The Complexity of Boolean Functions

The Complexity of Boolean Functions PDF Author: Ingo Wegener
Publisher:
ISBN:
Category : Algebra, Boolean
Languages : en
Pages : 502

Get Book Here

Book Description


Computing and Combinatorics

Computing and Combinatorics PDF Author: Bin Fu
Publisher: Springer
ISBN: 364222685X
Category : Computers
Languages : en
Pages : 662

Get Book Here

Book Description
This book constitutes the refereed proceedings of the 17th Annual International Conference on Computing and Combinatorics, held in Dallas, TX, USA, in August 2011. The 54 revised full papers presented were carefully reviewed and selected from 136 submissions. Topics covered are algorithms and data structures; algorithmic game theory and online algorithms; automata, languages, logic, and computability; combinatorics related to algorithms and complexity; complexity theory; computational learning theory and knowledge discovery; cryptography, reliability and security, and database theory; computational biology and bioinformatics; computational algebra, geometry, and number theory; graph drawing and information visualization; graph theory, communication networks, and optimization; parallel and distributed computing.