Combinatorial Mathematics, Optimal Designs, and Their Applications

Combinatorial Mathematics, Optimal Designs, and Their Applications PDF Author:
Publisher: Elsevier
ISBN: 0080867693
Category : Mathematics
Languages : en
Pages : 401

Get Book Here

Book Description
Combinatorial Mathematics, Optimal Designs, and Their Applications

Combinatorial Mathematics, Optimal Designs, and Their Applications

Combinatorial Mathematics, Optimal Designs, and Their Applications PDF Author:
Publisher: Elsevier
ISBN: 0080867693
Category : Mathematics
Languages : en
Pages : 401

Get Book Here

Book Description
Combinatorial Mathematics, Optimal Designs, and Their Applications

Combinatorial Designs and their Applications

Combinatorial Designs and their Applications PDF Author: Kathleen Quinn
Publisher: CRC Press
ISBN: 9780849306594
Category : Mathematics
Languages : en
Pages : 164

Get Book Here

Book Description
The fruit of a conference that gathered seven very active researchers in the field, Combinatorial Design and their Applications presents a wide but representative range of topics on the non-geometrical aspects of design theory. By concentrating on a few important areas, the authors succeed in providing greater detail in these areas in a more complete and accessible form. Through their contributions to this collection, they help fill a gap in the available combinatorics literature. The papers included in this volume cover recent developments in areas of current interest, such as difference sets, cryptography, and optimal linear codes. Researchers in combinatorics and other areas of pure mathematics, along with researchers in statistics and computer design will find in-depth, up-to-date discussions of design theory and the application of the theory to statistical design, codes, and cryptography.

Handbook of Combinatorial Designs

Handbook of Combinatorial Designs PDF Author: C. J. Colbourn
Publisher: Chapman and Hall/CRC
ISBN: 9781584885061
Category : Mathematics
Languages : en
Pages : 1016

Get Book Here

Book Description
Continuing in the bestselling, informative tradition of the first edition, the Handbook of Combinatorial Designs, Second Edition remains the only resource to contain all of the most important results and tables in the field of combinatorial design. This handbook covers the constructions, properties, and applications of designs as well as existence results. Over 30% longer than the first edition, the book builds upon the groundwork of its predecessor while retaining the original contributors' expertise. The first part contains a brief introduction and history of the subject. The following parts focus on four main classes of combinatorial designs: balanced incomplete block designs, orthogonal arrays and Latin squares, pairwise balanced designs, and Hadamard and orthogonal designs. Closely connected to the preceding sections, the next part surveys 65 additional classes of designs, such as balanced ternary, factorial, graphical, Howell, quasi-symmetric, and spherical. The final part presents mathematical and computational background related to design theory. New to the Second Edition An introductory part that provides a general overview and a historical perspective of the area New chapters on the history of design theory, various codes, bent functions, and numerous types of designs Fully updated tables, including BIBDs, MOLS, PBDs, and Hadamard matrices Nearly 2,200 references in a single bibliographic section Meeting the need for up-to-date and accessible tabular and reference information, this handbook provides the tools to understand combinatorial design theory and applications that span the entire discipline. The author maintains a website with more information.

Integers

Integers PDF Author: Bruce Landman
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110298163
Category : Mathematics
Languages : en
Pages : 1092

Get Book Here

Book Description
"Integers" is a refereed online journal devoted to research in the area of combinatorial number theory. It publishes original research articles in combinatorics and number theory. Topics covered by the journal include additive number theory, multiplicative number theory, sequences and sets, extremal combinatorics, Ramsey theory, elementary number theory, classical combinatorial problems, hypergraphs, and probabilistic number theory. Integers also houses a combinatorial games section. This work presents all papers of the 2013 volume in book form.

The Mathematics of Paul Erdös II

The Mathematics of Paul Erdös II PDF Author: Ronald L. Graham
Publisher: Springer Science & Business Media
ISBN: 3642604064
Category : Mathematics
Languages : en
Pages : 591

Get Book Here

Book Description
In 1992, when Paul Erdos was awarded a Doctor Honoris Causa by Charles University in Prague, a small conference was held, bringing together a distin guished group of researchers with interests spanning a variety of fields related to Erdos' own work. At that gathering, the idea occurred to several of us that it might be quite appropriate at this point in Erdos' career to solicit a col lection of articles illustrating various aspects of Erdos' mathematical life and work. The response to our solicitation was immediate and overwhelming, and these volumes are the result. Regarding the organization, we found it convenient to arrange the papers into six chapters, each mirroring Erdos' holistic approach to mathematics. Our goal was not merely a (random) collection of papers but rather a thor oughly edited volume composed in large part by articles explicitly solicited to illustrate interesting aspects of Erdos and his life and work. Each chap ter includes an introduction which often presents a sample of related Erdos' problems "in his own words". All these (sometimes lengthy) introductions were written jointly by editors. We wish to thank the nearly 70 contributors for their outstanding efforts (and their patience). In particular, we are grateful to Bela Bollobas for his extensive documentation of Paul Erdos' early years and mathematical high points (in the first part of this volume); our other authors are acknowledged in their respective chapters. We also want to thank A. Bondy, G. Hahn, I.

Combinatorial Game Theory

Combinatorial Game Theory PDF Author: Aaron N. Siegel
Publisher: American Mathematical Society
ISBN: 1470475685
Category : Mathematics
Languages : en
Pages : 541

Get Book Here

Book Description
It is wonderful to see advanced combinatorial game theory made accessible. Siegel's expertise and enjoyable writing style make this book a perfect resource for anyone wanting to learn the latest developments and open problems in the field. —Erik Demaine, MIT Aaron Siegel has been the major contributor to Combinatorial Game Theory over the last decade or so. Now, in this authoritative work, he has made the latest results in the theory accessible, so that the subject will achieve the place in mathematics that it deserves. —Richard Guy, University of Calgary Combinatorial game theory is the study of two-player games with no hidden information and no chance elements. The theory assigns algebraic values to positions in such games and seeks to quantify the algebraic and combinatorial structure of their interactions. Its modern form was introduced thirty years ago, with the publication of the classic Winning Ways for Your Mathematical Plays by Berlekamp, Conway, and Guy, and interest has rapidly increased in recent decades. This book is a comprehensive and up-to-date introduction to the subject, tracing its development from first principles and examples through many of its most recent advances. Roughly half the book is devoted to a rigorous treatment of the classical theory; the remaining material is an in-depth presentation of topics that appear for the first time in textbook form, including the theory of misère quotients and Berlekamp's generalized temperature theory. Packed with hundreds of examples and exercises and meticulously cross-referenced, Combinatorial Game Theory will appeal equally to students, instructors, and research professionals. More than forty open problems and conjectures are mentioned in the text, highlighting the many mysteries that still remain in this young and exciting field. Aaron Siegel holds a Ph.D. in mathematics from the University of California, Berkeley and has held positions at the Mathematical Sciences Research Institute and the Institute for Advanced Study. He was a partner at Berkeley Quantitative, a technology-driven hedge fund, and is presently employed by Twitter, Inc.

Introduction to Combinatorics

Introduction to Combinatorics PDF Author: Walter D. Wallis
Publisher: CRC Press
ISBN: 1498777635
Category : Mathematics
Languages : en
Pages : 424

Get Book Here

Book Description
What Is Combinatorics Anyway? Broadly speaking, combinatorics is the branch of mathematics dealing with different ways of selecting objects from a set or arranging objects. It tries to answer two major kinds of questions, namely, counting questions: how many ways can a selection or arrangement be chosen with a particular set of properties; and structural questions: does there exist a selection or arrangement of objects with a particular set of properties? The authors have presented a text for students at all levels of preparation. For some, this will be the first course where the students see several real proofs. Others will have a good background in linear algebra, will have completed the calculus stream, and will have started abstract algebra. The text starts by briefly discussing several examples of typical combinatorial problems to give the reader a better idea of what the subject covers. The next chapters explore enumerative ideas and also probability. It then moves on to enumerative functions and the relations between them, and generating functions and recurrences., Important families of functions, or numbers and then theorems are presented. Brief introductions to computer algebra and group theory come next. Structures of particular interest in combinatorics: posets, graphs, codes, Latin squares, and experimental designs follow. The authors conclude with further discussion of the interaction between linear algebra and combinatorics. Features Two new chapters on probability and posets. Numerous new illustrations, exercises, and problems. More examples on current technology use A thorough focus on accuracy Three appendices: sets, induction and proof techniques, vectors and matrices, and biographies with historical notes, Flexible use of MapleTM and MathematicaTM

Authentication Codes and Combinatorial Designs

Authentication Codes and Combinatorial Designs PDF Author: Dingyi Pei
Publisher: CRC Press
ISBN: 1420003186
Category : Computers
Languages : en
Pages : 253

Get Book Here

Book Description
Researchers and practitioners of cryptography and information security are constantly challenged to respond to new attacks and threats to information systems. Authentication Codes and Combinatorial Designs presents new findings and original work on perfect authentication codes characterized in terms of combinatorial designs, namely strong partially

Integer Points in Polyhedra -- Geometry, Number Theory, Representation Theory, Algebra, Optimization, Statistics

Integer Points in Polyhedra -- Geometry, Number Theory, Representation Theory, Algebra, Optimization, Statistics PDF Author: Matthias Beck
Publisher: American Mathematical Soc.
ISBN: 0821841734
Category : Mathematics
Languages : en
Pages : 202

Get Book Here

Book Description
"The AMS-IMS-SIAM Joint Summer Research Conference "Integer Points in Polyhedra--Geometry, Number Theory, Representation Theory, Algebra, Optimization, Statistics" was held in Snowbird, Utah in June 2006. This proceedings volume contains research and survey articles originating from the conference. The volume is a cross section of recent advances connected to lattice-point questions. Similar to the talks given at the conference, topics range from commutative algebra to optimization, from discrete geometry to statistics, from mirror symmetry to geometry of numbers. The book is suitable for researchers and graduate students interested in combinatorial aspects of the above fields." -- Back cover.

Combinatorics '84

Combinatorics '84 PDF Author: M. Biliotti
Publisher: Elsevier
ISBN: 0080872344
Category : Mathematics
Languages : en
Pages : 405

Get Book Here

Book Description
Interest in combinatorial techniques has been greatly enhanced by the applications they may offer in connection with computer technology. The 38 papers in this volume survey the state of the art and report on recent results in Combinatorial Geometries and their applications.Contributors: V. Abatangelo, L. Beneteau, W. Benz, A. Beutelspacher, A. Bichara, M. Biliotti, P. Biondi, F. Bonetti, R. Capodaglio di Cocco, P.V. Ceccherini, L. Cerlienco, N. Civolani, M. de Soete, M. Deza, F. Eugeni, G. Faina, P. Filip, S. Fiorini, J.C. Fisher, M. Gionfriddo, W. Heise, A. Herzer, M. Hille, J.W.P. Hirschfield, T. Ihringer, G. Korchmaros, F. Kramer, H. Kramer, P. Lancellotti, B. Larato, D. Lenzi, A. Lizzio, G. Lo Faro, N.A. Malara, M.C. Marino, N. Melone, G. Menichetti, K. Metsch, S. Milici, G. Nicoletti, C. Pellegrino, G. Pica, F. Piras, T. Pisanski, G.-C. Rota, A. Sappa, D. Senato, G. Tallini, J.A. Thas, N. Venanzangeli, A.M. Venezia, A.C.S. Ventre, H. Wefelscheid, B.J. Wilson, N. Zagaglia Salvi, H. Zeitler.