CO2 REFORMING OF METHANE ON Ni, Co-CONTAINING Al2O3-H-BETA PREPARED BY SOL-GEL METHOD

CO2 REFORMING OF METHANE ON Ni, Co-CONTAINING Al2O3-H-BETA PREPARED BY SOL-GEL METHOD PDF Author: Pornthicha Katong
Publisher:
ISBN:
Category : Catalyst supports
Languages : en
Pages : 316

Get Book Here

Book Description
In the present research, the effect of monometallic (10%wt.Ni, 10%wt.Co) and bimetallic (5%wt.NiCo) on different supports are H-Beta-Al2O3, Al2O3-SiO2 prepared by sol-gel method, and Gamma-alumina commercial catalysts. In addition, to study the effect of bimetallic catalysts with different loading ratio of nickel metal and cobalt metal on H-Beta-Al2O3 supports. Loading ratios of nickel and cobalt indicates as followed 1:3, 1:1, and 3:1. The catalytic activity tests for carbon dioxide reforming of methane at 700 ̊C and atmospheric pressure. It was found that the optimize bimetallic (5%wt.Ni5%wt.Co) which contained Ni:Co in a ratio of 1:1 supported on H-Beta-Al2O3 catalyst prepared by Sol-gel exhibit highest methane and carbon dioxide conversion in carbon dioxide reforming of methane reaction. The superior catalytic performance can be explain by the optimize amount of nickel and cobalt active sites and the smaller with NiO and CoO particles due to higher dispersion implied an easier reducibility and a shift the reduction temperature toward lower temperature. In Addition, the optimize cobalt addition which contained Ni:Co in a ratio of 1:1 has improving nickel metal dispersion of catalysts due to reduce the agglomerate of nickel particles. These features mirror a substantially higher resistance to carbon deposition of cobalt-containing catalysts.

CO2 REFORMING OF METHANE ON Ni, Co-CONTAINING Al2O3-H-BETA PREPARED BY SOL-GEL METHOD

CO2 REFORMING OF METHANE ON Ni, Co-CONTAINING Al2O3-H-BETA PREPARED BY SOL-GEL METHOD PDF Author: Pornthicha Katong
Publisher:
ISBN:
Category : Catalyst supports
Languages : en
Pages : 316

Get Book Here

Book Description
In the present research, the effect of monometallic (10%wt.Ni, 10%wt.Co) and bimetallic (5%wt.NiCo) on different supports are H-Beta-Al2O3, Al2O3-SiO2 prepared by sol-gel method, and Gamma-alumina commercial catalysts. In addition, to study the effect of bimetallic catalysts with different loading ratio of nickel metal and cobalt metal on H-Beta-Al2O3 supports. Loading ratios of nickel and cobalt indicates as followed 1:3, 1:1, and 3:1. The catalytic activity tests for carbon dioxide reforming of methane at 700 ̊C and atmospheric pressure. It was found that the optimize bimetallic (5%wt.Ni5%wt.Co) which contained Ni:Co in a ratio of 1:1 supported on H-Beta-Al2O3 catalyst prepared by Sol-gel exhibit highest methane and carbon dioxide conversion in carbon dioxide reforming of methane reaction. The superior catalytic performance can be explain by the optimize amount of nickel and cobalt active sites and the smaller with NiO and CoO particles due to higher dispersion implied an easier reducibility and a shift the reduction temperature toward lower temperature. In Addition, the optimize cobalt addition which contained Ni:Co in a ratio of 1:1 has improving nickel metal dispersion of catalysts due to reduce the agglomerate of nickel particles. These features mirror a substantially higher resistance to carbon deposition of cobalt-containing catalysts.

CO2 Reforming of Methane on Al2O3-supported Ni,Co Catalysts Prepared by Sol-gel Method

CO2 Reforming of Methane on Al2O3-supported Ni,Co Catalysts Prepared by Sol-gel Method PDF Author: Supawat Pachop
Publisher:
ISBN:
Category : Catalytic reforming
Languages : en
Pages : 122

Get Book Here

Book Description
Syngas is a main product from dry reforming of methane (DRM) which is efficient reaction to convert two main greenhouse gases (CH4 and CO2) into hydrogen and carbon monoxide with H2/CO ratio equal to 1. This study investigated the bimetallic NiCo on alumina-supported catalysts prepared by sol-gel method with different metal loading (7.5%Ni7.5%Co/Al2O3 or 1Ni1Co/Al2O3, 10%Ni5%Co/Al2O3 or 2Ni1Co/Al2O3, 11.25%Ni3.75%Co/Al2O3 or 3Ni1Co/Al2O3) and compared the optimal bimetallic catalyst with monometallic Ni/Al2O3 (15wt.%) and Co/Al2O3 (15wt.%). The synthesized catalysts were characterized by X-ray diffraction (XRD), N2-physisorption, Scanning Electron Microscopy (SEM), NH3 Temperature Programmed Desorption (NH3-TPD), temperature programmed reduction (H2-TPR), Thermo gravimetric analyze (TGA), and CO-chemisorption. The catalysts were used on DRM with composition of 50:50 (vol%) feed CH4:CO2 under atmospheric pressure at 700 °C. The bimetallic catalyst 3Ni1Co/Al2O3 exhibited the highest activities with H2 selectivity of 41%, CH4 conversion of 74%, CO conversion of 79%, high metal dispersion and high specific surface area. Moreover, the 3Ni1Co had high acceptable amount of carbon deposition and can be properly used for long term.

Carbon Dioxide Reforming of Methane for Hydrogen Production on Co Catalysts and Ni-co Bimetallic Catalysts

Carbon Dioxide Reforming of Methane for Hydrogen Production on Co Catalysts and Ni-co Bimetallic Catalysts PDF Author: Waralee Marungrueang
Publisher:
ISBN:
Category : Carbon dioxide
Languages : en
Pages : 160

Get Book Here

Book Description
The cobalt catalysts (cobalt content by weight: 7%, 10% and 15%) and cobalt-nickel bimetallic catalysts (cobalt-nickel content by weight: 3.5%-3.5%, 5%-5%, 7%-7%, 10%-10% and 15%-15%) were studied in dry reforming of methane for hydrogen and synthesis gas production. All catalysts were synthesized by the wetness impregnation method. The dry reforming of methane was carried out at 700oC, atmosphere pressure using a mixture; CH4 and CO2 in ratio 1:1. It was found that, after 120 minutes, the catalysts that gave the best methane conversion are 10%Co/Al2O3 (61.86%) for mono-metallic catalysts and 10%Ni-10%Co/Al2O3 (96.86%) for bimetallic catalysts. Moreover, the effect of adding potassium promoter to 10%Ni-10%Co/Al2O3 catalyst was studied. The methane conversion of potassium promoted 10%Ni-10%Co/Al2O3 catalyst was slightly lower than one without potassium. However, the adding of promoter could significantly decrease the carbon content on the catalysts.

New Dimensions in Production and Utilization of Hydrogen

New Dimensions in Production and Utilization of Hydrogen PDF Author: Sonil Nanda
Publisher: Elsevier
ISBN: 0128231572
Category : Technology & Engineering
Languages : en
Pages : 445

Get Book Here

Book Description
The gradual increase of population and the consequential rise in the energy demands in the recent years have led to the overwhelming use of fossil fuels. Hydrogen has recently gained substantial interest because of its outstanding features to be used as clean energy carrier and energy vector. Moreover, hydrogen appears to be an effective alternative to tackle the issues of energy security and greenhouse gas emissions given that it is widely recognized as a clean fuel with high energy capacity. Hydrogen can be produced by various techniques such as thermochemical, hydrothermal, electrochemical, electrolytic, biological and photocatalytic methods as well as hybrid systems. New Dimensions in Production and Utilization of Hydrogen emphasizes on the research, development and innovations in the production and utilization of hydrogen in the industrial biorefining, hydrotreating and hydrogenation technologies, fuel cells, aerospace sector, pharmaceuticals, metallurgy, as well as bio-oil upgrading. Moreover, the supply chain analysis, lifecycle assessment, techno-economic analysis, as well as strengths and threats of global hydrogen market are covered in the book. This book provides many significant insights and scientific findings of key technologies for hydrogen production, storage and emerging applications. The book serves as a reference material for chemical and biochemical engineers, mechanical engineers, physicists, chemists, biologists, biomedical scientists and scholars working in the field of sustainable energy and materials. - Discusses the efficient usage of hydrogen as standalone fuel or feedstock in downstream processing - Outlines key technologies for hydrogen production and their emerging applications - Includes innovative approaches to the research and applications of hydrogen, including hydrotreating technologies, fuel cell vehicles and green fuel synthesis, the aerospace sector, pharmaceuticals, carbon dioxide hydrogenation, and bio-oils upgrading - Serves as a reference for chemical, biochemical, and mechanical engineers, physicists, chemists, biologists, and biomedical scientists working in sustainable energy and materials

Carbon Dioxide Reforming of Methane

Carbon Dioxide Reforming of Methane PDF Author:
Publisher:
ISBN:
Category : Carbon dioxide
Languages : en
Pages :

Get Book Here

Book Description


World Ceramics Abstracts

World Ceramics Abstracts PDF Author:
Publisher:
ISBN:
Category : Ceramics
Languages : en
Pages : 908

Get Book Here

Book Description


Sonochemical Reactions

Sonochemical Reactions PDF Author: Selcan Karakuş
Publisher: BoD – Books on Demand
ISBN: 1838800018
Category : Science
Languages : en
Pages : 162

Get Book Here

Book Description
This book was written by authors in the field of ultrasound-assited synthesis and their applications. Among others, some of the topics covered are: ultrasound-assited synthesis of metal/metal oxide nanoparticles, graphene nanosheets, and ultrasound applications. In this book, authors focused on recent studies, applications, and new technological developments on fundamental properties of the ultrasound process.

Plasma Catalysis

Plasma Catalysis PDF Author: Annemie Bogaerts
Publisher: MDPI
ISBN: 3038977500
Category : Technology & Engineering
Languages : en
Pages : 248

Get Book Here

Book Description
Plasma catalysis is gaining increasing interest for various gas conversion applications, such as CO2 conversion into value-added chemicals and fuels, N2 fixation for the synthesis of NH3 or NOx, methane conversion into higher hydrocarbons or oxygenates. It is also widely used for air pollution control (e.g., VOC remediation). Plasma catalysis allows thermodynamically difficult reactions to proceed at ambient pressure and temperature, due to activation of the gas molecules by energetic electrons created in the plasma. However, plasma is very reactive but not selective, and thus a catalyst is needed to improve the selectivity. In spite of the growing interest in plasma catalysis, the underlying mechanisms of the (possible) synergy between plasma and catalyst are not yet fully understood. Indeed, plasma catalysis is quite complicated, as the plasma will affect the catalyst and vice versa. Moreover, due to the reactive plasma environment, the most suitable catalysts will probably be different from thermal catalysts. More research is needed to better understand the plasma–catalyst interactions, in order to further improve the applications.

New Advances in Hydrogenation Processes

New Advances in Hydrogenation Processes PDF Author: Maryam Takht Ravanchi
Publisher: BoD – Books on Demand
ISBN: 9535128698
Category : Science
Languages : en
Pages : 364

Get Book Here

Book Description
Hydrogen is one of the abundant elements on earth majorly in the form of water (H2O) and mainly as hydrogen gas (H2). Catalytic hydrogenation is a key reaction that has versatile applications in different industries. The main objective of this book is to bring together various applications of hydrogenation through the perspective of leading researchers in the field. This book is intended to be used as a graduate-level text book or as a practical guide for industrial engineers.

Engineering Solutions for CO2 Conversion

Engineering Solutions for CO2 Conversion PDF Author: Tomas Ramirez Reina
Publisher: John Wiley & Sons
ISBN: 3527346392
Category : Technology & Engineering
Languages : en
Pages : 498

Get Book Here

Book Description
A comprehensive guide that offers a review of the current technologies that tackle CO2 emissions The race to reduce CO2 emissions continues to be an urgent global challenge. "Engineering Solutions for CO2 Conversion" offers a thorough guide to the most current technologies designed to mitigate CO2 emissions ranging from CO2 capture to CO2 utilization approaches. With contributions from an international panel representing a wide range of expertise, this book contains a multidisciplinary toolkit that covers the myriad aspects of CO2 conversion strategies. Comprehensive in scope, it explores the chemical, physical, engineering and economical facets of CO2 conversion. "Engineering Solutions for CO2 Conversion" explores a broad range of topics including linking CFD and process simulations, membranes technologies for efficient CO2 capture-conversion, biogas sweetening technologies, plasma-assisted conversion of CO2, and much more. This important resource: * Addresses a pressing concern of global environmental damage, caused by the greenhouse gases emissions from fossil fuels * Contains a review of the most current developments on the various aspects of CO2 capture and utilization strategies * Incldues information on chemical, physical, engineering and economical facets of CO2 capture and utilization * Offers in-depth insight into materials design, processing characterization, and computer modeling with respect to CO2 capture and conversion Written for catalytic chemists, electrochemists, process engineers, chemical engineers, chemists in industry, photochemists, environmental chemists, theoretical chemists, environmental officers, "Engineering Solutions for CO2 Conversion" provides the most current and expert information on the many aspects and challenges of CO2 conversion.