Classical Lie Algebras at Infinity

Classical Lie Algebras at Infinity PDF Author: Ivan Penkov
Publisher: Springer Nature
ISBN: 3030896609
Category : Mathematics
Languages : en
Pages : 245

Get Book Here

Book Description
Originating from graduate topics courses given by the first author, this book functions as a unique text-monograph hybrid that bridges a traditional graduate course to research level representation theory. The exposition includes an introduction to the subject, some highlights of the theory and recent results in the field, and is therefore appropriate for advanced graduate students entering the field as well as research mathematicians wishing to expand their knowledge. The mathematical background required varies from chapter to chapter, but a standard course on Lie algebras and their representations, along with some knowledge of homological algebra, is necessary. Basic algebraic geometry and sheaf cohomology are needed for Chapter 10. Exercises of various levels of difficulty are interlaced throughout the text to add depth to topical comprehension. The unifying theme of this book is the structure and representation theory of infinite-dimensional locally reductive Lie algebras and superalgebras. Chapters 1-6 are foundational; each of the last 4 chapters presents a self-contained study of a specialized topic within the larger field. Lie superalgebras and flag supermanifolds are discussed in Chapters 3, 7, and 10, and may be skipped by the reader.

Classical Lie Algebras at Infinity

Classical Lie Algebras at Infinity PDF Author: Ivan Penkov
Publisher: Springer Nature
ISBN: 3030896609
Category : Mathematics
Languages : en
Pages : 245

Get Book Here

Book Description
Originating from graduate topics courses given by the first author, this book functions as a unique text-monograph hybrid that bridges a traditional graduate course to research level representation theory. The exposition includes an introduction to the subject, some highlights of the theory and recent results in the field, and is therefore appropriate for advanced graduate students entering the field as well as research mathematicians wishing to expand their knowledge. The mathematical background required varies from chapter to chapter, but a standard course on Lie algebras and their representations, along with some knowledge of homological algebra, is necessary. Basic algebraic geometry and sheaf cohomology are needed for Chapter 10. Exercises of various levels of difficulty are interlaced throughout the text to add depth to topical comprehension. The unifying theme of this book is the structure and representation theory of infinite-dimensional locally reductive Lie algebras and superalgebras. Chapters 1-6 are foundational; each of the last 4 chapters presents a self-contained study of a specialized topic within the larger field. Lie superalgebras and flag supermanifolds are discussed in Chapters 3, 7, and 10, and may be skipped by the reader.

Stability in Modules for Classical Lie Algebras: A Constructive Approach

Stability in Modules for Classical Lie Algebras: A Constructive Approach PDF Author: Georgia Benkart
Publisher: American Mathematical Soc.
ISBN: 0821824929
Category : Mathematics
Languages : en
Pages : 177

Get Book Here

Book Description
In this work we consider the problem of determining information about representations as the rank grows large, in fact, tends to infinity. Here we show that the set of dominant weights stabilizes as the rank goes to infinity and the multiplicities become polynomials in the rank. In addition, we give effective, easily computable algorithms for determining the set of dominant weights and illustrate how to calculate their multiplicity polynomials.

Classical and Quantum Mechanics with Lie Algebras

Classical and Quantum Mechanics with Lie Algebras PDF Author: Yair Shapira
Publisher:
ISBN: 9789811240065
Category : Mechanics
Languages : en
Pages : 678

Get Book Here

Book Description


Advances in Lie Superalgebras

Advances in Lie Superalgebras PDF Author: Maria Gorelik
Publisher: Springer Science & Business
ISBN: 3319029525
Category : Mathematics
Languages : en
Pages : 281

Get Book Here

Book Description
The volume is the outcome of the conference "Lie superalgebras," which was held at the Istituto Nazionale di Alta Matematica, in 2012. The conference gathered many specialists in the subject, and the talks held provided comprehensive insights into the newest trends in research on Lie superalgebras (and related topics like vertex algebras, representation theory and supergeometry). The book contains contributions of many leading esperts in the field and provides a complete account of the newest trends in research on Lie Superalgebras.

Connected at infinity II: a selection of mathematics by Indians

Connected at infinity II: a selection of mathematics by Indians PDF Author: Rajendra Bhatia
Publisher: Springer
ISBN: 9386279568
Category : Mathematics
Languages : en
Pages : 193

Get Book Here

Book Description


Representations and Nilpotent Orbits of Lie Algebraic Systems

Representations and Nilpotent Orbits of Lie Algebraic Systems PDF Author: Maria Gorelik
Publisher: Springer Nature
ISBN: 3030235319
Category : Mathematics
Languages : en
Pages : 563

Get Book Here

Book Description
This volume, a celebration of Anthony Joseph’s fundamental influence on classical and quantized representation theory, explores a wide array of current topics in Lie theory by experts in the area. The chapters are based on the 2017 sister conferences titled “Algebraic Modes of Representations,” the first of which was held from July 16-18 at the Weizmann Institute of Science and the second from July 19-23 at the University of Haifa. The chapters in this volume cover a range of topics, including: Primitive ideals Invariant theory Geometry of Lie group actions Quantum affine algebras Yangians Categorification Vertex algebras This volume is addressed to mathematicians who specialize in representation theory and Lie theory, and who wish to learn more about this fascinating subject.

Perspectives in Lie Theory

Perspectives in Lie Theory PDF Author: Filippo Callegaro
Publisher: Springer
ISBN: 3319589717
Category : Mathematics
Languages : en
Pages : 465

Get Book Here

Book Description
Lie theory is a mathematical framework for encoding the concept of symmetries of a problem, and was the central theme of an INdAM intensive research period at the Centro de Giorgi in Pisa, Italy, in the academic year 2014-2015. This book gathers the key outcomes of this period, addressing topics such as: structure and representation theory of vertex algebras, Lie algebras and superalgebras, as well as hyperplane arrangements with different approaches, ranging from geometry and topology to combinatorics.

An Introduction to Lie Groups and Lie Algebras

An Introduction to Lie Groups and Lie Algebras PDF Author: Alexander A. Kirillov
Publisher: Cambridge University Press
ISBN: 0521889693
Category : Mathematics
Languages : en
Pages : 237

Get Book Here

Book Description
This book is an introduction to semisimple Lie algebras. It is concise and informal, with numerous exercises and examples.

Naive Lie Theory

Naive Lie Theory PDF Author: John Stillwell
Publisher: Springer Science & Business Media
ISBN: 038778215X
Category : Mathematics
Languages : en
Pages : 230

Get Book Here

Book Description
In this new textbook, acclaimed author John Stillwell presents a lucid introduction to Lie theory suitable for junior and senior level undergraduates. In order to achieve this, he focuses on the so-called "classical groups'' that capture the symmetries of real, complex, and quaternion spaces. These symmetry groups may be represented by matrices, which allows them to be studied by elementary methods from calculus and linear algebra. This naive approach to Lie theory is originally due to von Neumann, and it is now possible to streamline it by using standard results of undergraduate mathematics. To compensate for the limitations of the naive approach, end of chapter discussions introduce important results beyond those proved in the book, as part of an informal sketch of Lie theory and its history. John Stillwell is Professor of Mathematics at the University of San Francisco. He is the author of several highly regarded books published by Springer, including The Four Pillars of Geometry (2005), Elements of Number Theory (2003), Mathematics and Its History (Second Edition, 2002), Numbers and Geometry (1998) and Elements of Algebra (1994).

Langlands Correspondence for Loop Groups

Langlands Correspondence for Loop Groups PDF Author: Edward Frenkel
Publisher: Cambridge University Press
ISBN: 0521854431
Category : Mathematics
Languages : en
Pages : 5

Get Book Here

Book Description
The first account of local geometric Langlands Correspondence, a new area of mathematical physics developed by the author.