Author: Rabinder N Madan
Publisher: World Scientific
ISBN: 9814504319
Category :
Languages : en
Pages : 1089
Book Description
For uninitiated researchers, engineers, and scientists interested in a quick entry into the subject of chaos, this book offers a timely collection of 55 carefully selected papers covering almost every aspect of this subject. Because Chua's circuit is endowed with virtually every bifurcation phenomena reported in the extensive literature on chaos, and because it is the only chaotic system which can be easily built by a novice, simulated in a personal computer, and tractable mathematically, it has become a paradigm for chaos, and a vehicle for illustrating this ubiquitous phenomenon. Its supreme simplicity and robustness has made it the circuit of choice for generating chaotic signals for practical applications.In addition to the 48 illuminating papers drawn from a recent two-part Special Issue (March and June, 1993) of the Journal of Circuits, Systems, and Computers devoted exclusively to Chua's circuit, several highly illustrative tutorials and incisive state-of-the-art reviews on the latest experimental, computational, and analytical investigations on chaos are also included. To enhance its pedagogical value, a diskette containing a user-friendly software and data base on many basic chaotic phenomena is attached to the book, as well as a gallery of stunningly colorful strange attractors.Beginning with an elementary (freshman-level physics) introduction on experimental chaos, the book presents a step-by-step guided tour, with papers of increasing complexity, which covers almost every conceivable aspects of bifurcation and chaos. The second half of the book contains many original materials contributed by world-renowned authorities on chaos, including L P Shil'nikov, A N Sharkovsky, M Misiurewicz, A I Mees, R Lozi, L O Chua and V S Afraimovich.The scope of topics covered is quite comprehensive, including at least one paper on each of the following topics: routes to chaos, 1-D maps, universality, self-similarity, 2-parameter renormalization group analysis, piecewise-linear dynamics, slow-fast dynamics, confinor analysis, symmetry breaking, strange attractors, basins of attraction, geometric invariants, time-series reconstruction, Lyapunov exponents, bispectral analysis, homoclinic bifurcation, stochastic resonance, synchronization, and control of chaos, as well as several novel applications of chaos, including secure communications, visual sensing, neural networks, dry turbulence, nonlinear waves and music.
Chua's Circuit: A Paradigm For Chaos
Author: Rabinder N Madan
Publisher: World Scientific
ISBN: 9814504319
Category :
Languages : en
Pages : 1089
Book Description
For uninitiated researchers, engineers, and scientists interested in a quick entry into the subject of chaos, this book offers a timely collection of 55 carefully selected papers covering almost every aspect of this subject. Because Chua's circuit is endowed with virtually every bifurcation phenomena reported in the extensive literature on chaos, and because it is the only chaotic system which can be easily built by a novice, simulated in a personal computer, and tractable mathematically, it has become a paradigm for chaos, and a vehicle for illustrating this ubiquitous phenomenon. Its supreme simplicity and robustness has made it the circuit of choice for generating chaotic signals for practical applications.In addition to the 48 illuminating papers drawn from a recent two-part Special Issue (March and June, 1993) of the Journal of Circuits, Systems, and Computers devoted exclusively to Chua's circuit, several highly illustrative tutorials and incisive state-of-the-art reviews on the latest experimental, computational, and analytical investigations on chaos are also included. To enhance its pedagogical value, a diskette containing a user-friendly software and data base on many basic chaotic phenomena is attached to the book, as well as a gallery of stunningly colorful strange attractors.Beginning with an elementary (freshman-level physics) introduction on experimental chaos, the book presents a step-by-step guided tour, with papers of increasing complexity, which covers almost every conceivable aspects of bifurcation and chaos. The second half of the book contains many original materials contributed by world-renowned authorities on chaos, including L P Shil'nikov, A N Sharkovsky, M Misiurewicz, A I Mees, R Lozi, L O Chua and V S Afraimovich.The scope of topics covered is quite comprehensive, including at least one paper on each of the following topics: routes to chaos, 1-D maps, universality, self-similarity, 2-parameter renormalization group analysis, piecewise-linear dynamics, slow-fast dynamics, confinor analysis, symmetry breaking, strange attractors, basins of attraction, geometric invariants, time-series reconstruction, Lyapunov exponents, bispectral analysis, homoclinic bifurcation, stochastic resonance, synchronization, and control of chaos, as well as several novel applications of chaos, including secure communications, visual sensing, neural networks, dry turbulence, nonlinear waves and music.
Publisher: World Scientific
ISBN: 9814504319
Category :
Languages : en
Pages : 1089
Book Description
For uninitiated researchers, engineers, and scientists interested in a quick entry into the subject of chaos, this book offers a timely collection of 55 carefully selected papers covering almost every aspect of this subject. Because Chua's circuit is endowed with virtually every bifurcation phenomena reported in the extensive literature on chaos, and because it is the only chaotic system which can be easily built by a novice, simulated in a personal computer, and tractable mathematically, it has become a paradigm for chaos, and a vehicle for illustrating this ubiquitous phenomenon. Its supreme simplicity and robustness has made it the circuit of choice for generating chaotic signals for practical applications.In addition to the 48 illuminating papers drawn from a recent two-part Special Issue (March and June, 1993) of the Journal of Circuits, Systems, and Computers devoted exclusively to Chua's circuit, several highly illustrative tutorials and incisive state-of-the-art reviews on the latest experimental, computational, and analytical investigations on chaos are also included. To enhance its pedagogical value, a diskette containing a user-friendly software and data base on many basic chaotic phenomena is attached to the book, as well as a gallery of stunningly colorful strange attractors.Beginning with an elementary (freshman-level physics) introduction on experimental chaos, the book presents a step-by-step guided tour, with papers of increasing complexity, which covers almost every conceivable aspects of bifurcation and chaos. The second half of the book contains many original materials contributed by world-renowned authorities on chaos, including L P Shil'nikov, A N Sharkovsky, M Misiurewicz, A I Mees, R Lozi, L O Chua and V S Afraimovich.The scope of topics covered is quite comprehensive, including at least one paper on each of the following topics: routes to chaos, 1-D maps, universality, self-similarity, 2-parameter renormalization group analysis, piecewise-linear dynamics, slow-fast dynamics, confinor analysis, symmetry breaking, strange attractors, basins of attraction, geometric invariants, time-series reconstruction, Lyapunov exponents, bispectral analysis, homoclinic bifurcation, stochastic resonance, synchronization, and control of chaos, as well as several novel applications of chaos, including secure communications, visual sensing, neural networks, dry turbulence, nonlinear waves and music.
A Gallery of Chua Attractors
Author: Eleonora Bilotta
Publisher: World Scientific
ISBN: 9812790624
Category : Mathematics
Languages : en
Pages : 607
Book Description
Chaos is considered as one of the most important concepts in modern science. It originally appeared only in computer simulation (the famous Lorenz equation of 1963), but this changed with the introduction of Chua's oscillator (1986) — a simple electronic circuit with the ability to generate a vast range of chaotic behaviors. With Chua's circuit, chaos became a physical phenomenon, readily understood and represented in mathematical language. Yet, even so, it is still difficult for the non-specialist to appreciate the full variety of behaviors that the system can produce.This book aims to bridge the gap. A gallery of nearly 900 “chaotic attractors” — some generated by Chua's physical circuit, the majority through computer simulation of the circuit and its generalizations — are illustrated as 3D color images, time series and fast Fourier transform algorithms. For interested researchers, also presented is the information necessary to replicate the behaviors and images. Finally, how the fractal richness can be plied to artistic ends in generating music and interesting sounds is shown; some examples are included in the DVD-ROM which comes with the book.The contents have also appeared in the International Journal of Bifurcation and Chaos (2007).
Publisher: World Scientific
ISBN: 9812790624
Category : Mathematics
Languages : en
Pages : 607
Book Description
Chaos is considered as one of the most important concepts in modern science. It originally appeared only in computer simulation (the famous Lorenz equation of 1963), but this changed with the introduction of Chua's oscillator (1986) — a simple electronic circuit with the ability to generate a vast range of chaotic behaviors. With Chua's circuit, chaos became a physical phenomenon, readily understood and represented in mathematical language. Yet, even so, it is still difficult for the non-specialist to appreciate the full variety of behaviors that the system can produce.This book aims to bridge the gap. A gallery of nearly 900 “chaotic attractors” — some generated by Chua's physical circuit, the majority through computer simulation of the circuit and its generalizations — are illustrated as 3D color images, time series and fast Fourier transform algorithms. For interested researchers, also presented is the information necessary to replicate the behaviors and images. Finally, how the fractal richness can be plied to artistic ends in generating music and interesting sounds is shown; some examples are included in the DVD-ROM which comes with the book.The contents have also appeared in the International Journal of Bifurcation and Chaos (2007).
Chaos in Electronics
Author: M.A. van Wyk
Publisher: Springer Science & Business Media
ISBN: 9401589216
Category : Technology & Engineering
Languages : en
Pages : 489
Book Description
Many dynamical systems in physics, chemistry and biology exhibit complex be haviour. The apparently random motion of a fluid is the best known example. How ever also vibrating structures, electronic oscillators, magnetic devices,lasers, chemical oscillators, and population kinetics can behave in a complicated manner. One can find irregular oscillations, which is now known as chaotic behaviour. The research field of nonlinear dynamical systems and especially the study of chaotic systems has been hailed as one of the important breaktroughs in science this century. The sim plest realization of a system with chaotic behaviour is an electronic oscillator. The purpose of this book is to provide a comprehensive introduction to the application of chaos theory to electronic systems. The book provides both the theoretical and experimental foundations of this research field. Each electronic circuit is described in detail together with its mathematical model. Controlling chaos of electronic oscilla tors is also included. End of proofs and examples are indicated by •. Inside examples the end of proofs are indicated with O. We wish to express our gratitude to Catharine Thompson for a critical reading of the manuscript. Any useful suggestions and comments are welcome. Email address of the first author: MVANWYK@TSAMAIL. TRSA. AC. ZA Email address of the first author: WHS@RAU3. RAU. AC. ZA Home page of the authors: http://zeus. rau. ac. za/steeb/steeb. html xi Chapter 1 Introduction 1.
Publisher: Springer Science & Business Media
ISBN: 9401589216
Category : Technology & Engineering
Languages : en
Pages : 489
Book Description
Many dynamical systems in physics, chemistry and biology exhibit complex be haviour. The apparently random motion of a fluid is the best known example. How ever also vibrating structures, electronic oscillators, magnetic devices,lasers, chemical oscillators, and population kinetics can behave in a complicated manner. One can find irregular oscillations, which is now known as chaotic behaviour. The research field of nonlinear dynamical systems and especially the study of chaotic systems has been hailed as one of the important breaktroughs in science this century. The sim plest realization of a system with chaotic behaviour is an electronic oscillator. The purpose of this book is to provide a comprehensive introduction to the application of chaos theory to electronic systems. The book provides both the theoretical and experimental foundations of this research field. Each electronic circuit is described in detail together with its mathematical model. Controlling chaos of electronic oscilla tors is also included. End of proofs and examples are indicated by •. Inside examples the end of proofs are indicated with O. We wish to express our gratitude to Catharine Thompson for a critical reading of the manuscript. Any useful suggestions and comments are welcome. Email address of the first author: MVANWYK@TSAMAIL. TRSA. AC. ZA Email address of the first author: WHS@RAU3. RAU. AC. ZA Home page of the authors: http://zeus. rau. ac. za/steeb/steeb. html xi Chapter 1 Introduction 1.
Applications of Chaos and Nonlinear Dynamics in Engineering -
Author: Santo Banerjee
Publisher: Springer Science & Business Media
ISBN: 3642219217
Category : Technology & Engineering
Languages : en
Pages : 349
Book Description
Chaos and nonlinear dynamics initially developed as a new emergent field with its foundation in physics and applied mathematics. The highly generic, interdisciplinary quality of the insights gained in the last few decades has spawned myriad applications in almost all branches of science and technology—and even well beyond. Wherever quantitative modeling and analysis of complex, nonlinear phenomena is required, chaos theory and its methods can play a key role. This volume concentrates on reviewing the most relevant contemporary applications of chaotic nonlinear systems as they apply to the various cutting-edge branches of engineering. The book covers the theory as applied to robotics, electronic and communication engineering (for example chaos synchronization and cryptography) as well as to civil and mechanical engineering, where its use in damage monitoring and control is explored). Featuring contributions from active and leading research groups, this collection is ideal both as a reference and as a ‘recipe book’ full of tried and tested, successful engineering applications
Publisher: Springer Science & Business Media
ISBN: 3642219217
Category : Technology & Engineering
Languages : en
Pages : 349
Book Description
Chaos and nonlinear dynamics initially developed as a new emergent field with its foundation in physics and applied mathematics. The highly generic, interdisciplinary quality of the insights gained in the last few decades has spawned myriad applications in almost all branches of science and technology—and even well beyond. Wherever quantitative modeling and analysis of complex, nonlinear phenomena is required, chaos theory and its methods can play a key role. This volume concentrates on reviewing the most relevant contemporary applications of chaotic nonlinear systems as they apply to the various cutting-edge branches of engineering. The book covers the theory as applied to robotics, electronic and communication engineering (for example chaos synchronization and cryptography) as well as to civil and mechanical engineering, where its use in damage monitoring and control is explored). Featuring contributions from active and leading research groups, this collection is ideal both as a reference and as a ‘recipe book’ full of tried and tested, successful engineering applications
Chaos In Circuits And Systems
Author: Guanrong Chen
Publisher: World Scientific
ISBN: 9814488704
Category : Technology & Engineering
Languages : en
Pages : 656
Book Description
In this volume, leading experts present current achievements in the forefront of research in the challenging field of chaos in circuits and systems, with emphasis on engineering perspectives, methodologies, circuitry design techniques, and potential applications of chaos and bifurcation. A combination of overview, tutorial and technical articles, the book describes state-of-the-art research on significant problems in this field. It is suitable for readers ranging from graduate students, university professors, laboratory researchers and industrial practitioners to applied mathematicians and physicists in electrical, electronic, mechanical, physical, chemical and biomedical engineering and science.
Publisher: World Scientific
ISBN: 9814488704
Category : Technology & Engineering
Languages : en
Pages : 656
Book Description
In this volume, leading experts present current achievements in the forefront of research in the challenging field of chaos in circuits and systems, with emphasis on engineering perspectives, methodologies, circuitry design techniques, and potential applications of chaos and bifurcation. A combination of overview, tutorial and technical articles, the book describes state-of-the-art research on significant problems in this field. It is suitable for readers ranging from graduate students, university professors, laboratory researchers and industrial practitioners to applied mathematicians and physicists in electrical, electronic, mechanical, physical, chemical and biomedical engineering and science.
Chaos in Nonlinear Oscillators
Author: Muthusamy Lakshmanan
Publisher: World Scientific
ISBN: 9789810221430
Category : Science
Languages : en
Pages : 346
Book Description
This book deals with the bifurcation and chaotic aspects of damped and driven nonlinear oscillators. The analytical and numerical aspects of the chaotic dynamics of these oscillators are covered, together with appropriate experimental studies using nonlinear electronic circuits. Recent exciting developments in chaos research are also discussed, such as the control and synchronization of chaos and possible technological applications.
Publisher: World Scientific
ISBN: 9789810221430
Category : Science
Languages : en
Pages : 346
Book Description
This book deals with the bifurcation and chaotic aspects of damped and driven nonlinear oscillators. The analytical and numerical aspects of the chaotic dynamics of these oscillators are covered, together with appropriate experimental studies using nonlinear electronic circuits. Recent exciting developments in chaos research are also discussed, such as the control and synchronization of chaos and possible technological applications.
Chua's Circuit Implementations
Author: Luigi Fortuna
Publisher: World Scientific
ISBN: 9812839240
Category : Technology & Engineering
Languages : en
Pages : 222
Book Description
Since the birth of the Chua circuit in 1983, a considerable number of fruitful, fascinating and relevant research topics have arisen. In honor of the 25th anniversary of the invention of Chua's circuit, this book presents the 25 years of research on the implementation of Chua's circuit, and also discusses future directions and emerging applications of recent results. The purpose of the book is to provide researchers, PhD students, and undergraduate students a research monograph containing both fundamentals on the topics and advanced results that have been recently obtained. With about 60 illustrations included in the book, it also shows the detailed schematics of several different implementations that can be easily reproduced with a low-cost experimental setup and PC-based measurement instrumentation.
Publisher: World Scientific
ISBN: 9812839240
Category : Technology & Engineering
Languages : en
Pages : 222
Book Description
Since the birth of the Chua circuit in 1983, a considerable number of fruitful, fascinating and relevant research topics have arisen. In honor of the 25th anniversary of the invention of Chua's circuit, this book presents the 25 years of research on the implementation of Chua's circuit, and also discusses future directions and emerging applications of recent results. The purpose of the book is to provide researchers, PhD students, and undergraduate students a research monograph containing both fundamentals on the topics and advanced results that have been recently obtained. With about 60 illustrations included in the book, it also shows the detailed schematics of several different implementations that can be easily reproduced with a low-cost experimental setup and PC-based measurement instrumentation.
Fractional-Order Nonlinear Systems
Author: Ivo Petráš
Publisher: Springer Science & Business Media
ISBN: 3642181015
Category : Technology & Engineering
Languages : en
Pages : 218
Book Description
"Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation" presents a study of fractional-order chaotic systems accompanied by Matlab programs for simulating their state space trajectories, which are shown in the illustrations in the book. Description of the chaotic systems is clearly presented and their analysis and numerical solution are done in an easy-to-follow manner. Simulink models for the selected fractional-order systems are also presented. The readers will understand the fundamentals of the fractional calculus, how real dynamical systems can be described using fractional derivatives and fractional differential equations, how such equations can be solved, and how to simulate and explore chaotic systems of fractional order. The book addresses to mathematicians, physicists, engineers, and other scientists interested in chaos phenomena or in fractional-order systems. It can be used in courses on dynamical systems, control theory, and applied mathematics at graduate or postgraduate level. Ivo Petráš is an Associate Professor of automatic control and the Director of the Institute of Control and Informatization of Production Processes, Faculty of BERG, Technical University of Košice, Slovak Republic. His main research interests include control systems, industrial automation, and applied mathematics.
Publisher: Springer Science & Business Media
ISBN: 3642181015
Category : Technology & Engineering
Languages : en
Pages : 218
Book Description
"Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation" presents a study of fractional-order chaotic systems accompanied by Matlab programs for simulating their state space trajectories, which are shown in the illustrations in the book. Description of the chaotic systems is clearly presented and their analysis and numerical solution are done in an easy-to-follow manner. Simulink models for the selected fractional-order systems are also presented. The readers will understand the fundamentals of the fractional calculus, how real dynamical systems can be described using fractional derivatives and fractional differential equations, how such equations can be solved, and how to simulate and explore chaotic systems of fractional order. The book addresses to mathematicians, physicists, engineers, and other scientists interested in chaos phenomena or in fractional-order systems. It can be used in courses on dynamical systems, control theory, and applied mathematics at graduate or postgraduate level. Ivo Petráš is an Associate Professor of automatic control and the Director of the Institute of Control and Informatization of Production Processes, Faculty of BERG, Technical University of Košice, Slovak Republic. His main research interests include control systems, industrial automation, and applied mathematics.
Nonlinear Circuits and Systems with Memristors
Author: Fernando Corinto
Publisher: Springer Nature
ISBN: 3030556514
Category : Technology & Engineering
Languages : en
Pages : 438
Book Description
This book presents a new approach to the study of physical nonlinear circuits and advanced computing architectures with memristor devices. Such a unified approach to memristor theory has never been systematically presented in book form. After giving an introduction on memristor-based nonlinear dynamical circuits (e.g., periodic/chaotic oscillators) and their use as basic computing analogue elements, the authors delve into the nonlinear dynamical properties of circuits and systems with memristors and present the flux-charge analysis, a novel method for analyzing the nonlinear dynamics starting from writing Kirchhoff laws and constitutive relations of memristor circuit elements in the flux-charge domain. This analysis method reveals new peculiar and intriguing nonlinear phenomena in memristor circuits, such as the coexistence of different nonlinear dynamical behaviors, extreme multistability and bifurcations without parameters. The book also describes how arrays of memristor-based nonlinear oscillators and locally-coupled neural networks can be applied in the field of analog computing architectures, for example for pattern recognition. The book will be of interest to scientists and engineers involved in the conceptual design of physical memristor devices and systems, mathematical and circuit models of physical processes, circuits and networks design, system engineering, or data processing and system analysis.
Publisher: Springer Nature
ISBN: 3030556514
Category : Technology & Engineering
Languages : en
Pages : 438
Book Description
This book presents a new approach to the study of physical nonlinear circuits and advanced computing architectures with memristor devices. Such a unified approach to memristor theory has never been systematically presented in book form. After giving an introduction on memristor-based nonlinear dynamical circuits (e.g., periodic/chaotic oscillators) and their use as basic computing analogue elements, the authors delve into the nonlinear dynamical properties of circuits and systems with memristors and present the flux-charge analysis, a novel method for analyzing the nonlinear dynamics starting from writing Kirchhoff laws and constitutive relations of memristor circuit elements in the flux-charge domain. This analysis method reveals new peculiar and intriguing nonlinear phenomena in memristor circuits, such as the coexistence of different nonlinear dynamical behaviors, extreme multistability and bifurcations without parameters. The book also describes how arrays of memristor-based nonlinear oscillators and locally-coupled neural networks can be applied in the field of analog computing architectures, for example for pattern recognition. The book will be of interest to scientists and engineers involved in the conceptual design of physical memristor devices and systems, mathematical and circuit models of physical processes, circuits and networks design, system engineering, or data processing and system analysis.
Chaos
Author: Kathleen Alligood
Publisher: Springer
ISBN: 3642592813
Category : Mathematics
Languages : en
Pages : 620
Book Description
BACKGROUND Sir Isaac Newton hrought to the world the idea of modeling the motion of physical systems with equations. It was necessary to invent calculus along the way, since fundamental equations of motion involve velocities and accelerations, of position. His greatest single success was his discovery that which are derivatives the motion of the planets and moons of the solar system resulted from a single fundamental source: the gravitational attraction of the hodies. He demonstrated that the ohserved motion of the planets could he explained hy assuming that there is a gravitational attraction he tween any two ohjects, a force that is proportional to the product of masses and inversely proportional to the square of the distance between them. The circular, elliptical, and parabolic orhits of astronomy were v INTRODUCTION no longer fundamental determinants of motion, but were approximations of laws specified with differential equations. His methods are now used in modeling motion and change in all areas of science. Subsequent generations of scientists extended the method of using differ ential equations to describe how physical systems evolve. But the method had a limitation. While the differential equations were sufficient to determine the behavior-in the sense that solutions of the equations did exist-it was frequently difficult to figure out what that behavior would be. It was often impossible to write down solutions in relatively simple algebraic expressions using a finite number of terms. Series solutions involving infinite sums often would not converge beyond some finite time.
Publisher: Springer
ISBN: 3642592813
Category : Mathematics
Languages : en
Pages : 620
Book Description
BACKGROUND Sir Isaac Newton hrought to the world the idea of modeling the motion of physical systems with equations. It was necessary to invent calculus along the way, since fundamental equations of motion involve velocities and accelerations, of position. His greatest single success was his discovery that which are derivatives the motion of the planets and moons of the solar system resulted from a single fundamental source: the gravitational attraction of the hodies. He demonstrated that the ohserved motion of the planets could he explained hy assuming that there is a gravitational attraction he tween any two ohjects, a force that is proportional to the product of masses and inversely proportional to the square of the distance between them. The circular, elliptical, and parabolic orhits of astronomy were v INTRODUCTION no longer fundamental determinants of motion, but were approximations of laws specified with differential equations. His methods are now used in modeling motion and change in all areas of science. Subsequent generations of scientists extended the method of using differ ential equations to describe how physical systems evolve. But the method had a limitation. While the differential equations were sufficient to determine the behavior-in the sense that solutions of the equations did exist-it was frequently difficult to figure out what that behavior would be. It was often impossible to write down solutions in relatively simple algebraic expressions using a finite number of terms. Series solutions involving infinite sums often would not converge beyond some finite time.