Vertex Algebras and Algebraic Curves

Vertex Algebras and Algebraic Curves PDF Author: Edward Frenkel
Publisher: American Mathematical Soc.
ISBN: 0821836749
Category : Mathematics
Languages : en
Pages : 418

Get Book Here

Book Description
Vertex algebras are algebraic objects that encapsulate the concept of operator product expansion from two-dimensional conformal field theory. Vertex algebras are fast becoming ubiquitous in many areas of modern mathematics, with applications to representation theory, algebraic geometry, the theory of finite groups, modular functions, topology, integrable systems, and combinatorics. This book is an introduction to the theory of vertex algebras with a particular emphasis on the relationship with the geometry of algebraic curves. The notion of a vertex algebra is introduced in a coordinate-independent way, so that vertex operators become well defined on arbitrary smooth algebraic curves, possibly equipped with additional data, such as a vector bundle. Vertex algebras then appear as the algebraic objects encoding the geometric structure of various moduli spaces associated with algebraic curves. Therefore they may be used to give a geometric interpretation of various questions of representation theory. The book contains many original results, introduces important new concepts, and brings new insights into the theory of vertex algebras. The authors have made a great effort to make the book self-contained and accessible to readers of all backgrounds. Reviewers of the first edition anticipated that it would have a long-lasting influence on this exciting field of mathematics and would be very useful for graduate students and researchers interested in the subject. This second edition, substantially improved and expanded, includes several new topics, in particular an introduction to the Beilinson-Drinfeld theory of factorization algebras and the geometric Langlands correspondence.

Vertex Algebras and Algebraic Curves

Vertex Algebras and Algebraic Curves PDF Author: Edward Frenkel
Publisher: American Mathematical Soc.
ISBN: 0821836749
Category : Mathematics
Languages : en
Pages : 418

Get Book Here

Book Description
Vertex algebras are algebraic objects that encapsulate the concept of operator product expansion from two-dimensional conformal field theory. Vertex algebras are fast becoming ubiquitous in many areas of modern mathematics, with applications to representation theory, algebraic geometry, the theory of finite groups, modular functions, topology, integrable systems, and combinatorics. This book is an introduction to the theory of vertex algebras with a particular emphasis on the relationship with the geometry of algebraic curves. The notion of a vertex algebra is introduced in a coordinate-independent way, so that vertex operators become well defined on arbitrary smooth algebraic curves, possibly equipped with additional data, such as a vector bundle. Vertex algebras then appear as the algebraic objects encoding the geometric structure of various moduli spaces associated with algebraic curves. Therefore they may be used to give a geometric interpretation of various questions of representation theory. The book contains many original results, introduces important new concepts, and brings new insights into the theory of vertex algebras. The authors have made a great effort to make the book self-contained and accessible to readers of all backgrounds. Reviewers of the first edition anticipated that it would have a long-lasting influence on this exciting field of mathematics and would be very useful for graduate students and researchers interested in the subject. This second edition, substantially improved and expanded, includes several new topics, in particular an introduction to the Beilinson-Drinfeld theory of factorization algebras and the geometric Langlands correspondence.

Chiral Algebras

Chiral Algebras PDF Author: Alexander Beilinson
Publisher: American Mathematical Soc.
ISBN: 0821835289
Category : Mathematics
Languages : en
Pages : 386

Get Book Here

Book Description
This long-awaited publication contains the results of the research of two distinguished professors from the University of Chicago, Alexander Beilinson and Fields Medalist Vladimir Drinfeld. Years in the making, this is a one-of-a-kind book featuring previously unpublished material. Chiral algebras form the primary algebraic structure of modern conformal field theory. Each chiral algebra lives on an algebraic curve, and in the special case where this curve is the affine line, chiral algebras invariant under translations are the same as well-known and widely used vertex algebras. The exposition of this book covers the following topics: the ``classical'' counterpart of the theory, which is an algebraic theory of non-linear differential equations and their symmetries; the local aspects of the theory of chiral algebras, including the study of some basic examples, such as the chiral algebras of differential operators; the formalism of chiral homology treating ``the space of conformal blocks'' of the conformal field theory, which is a ``quantum'' counterpart of the space of the global solutions of a differential equation. The book is intended for researchers working in algebraic geometry and its applications to mathematical physics and representation theory.

Vertex Algebras and Geometry

Vertex Algebras and Geometry PDF Author: Thomas Creutzig
Publisher: American Mathematical Soc.
ISBN: 1470437171
Category : Mathematics
Languages : en
Pages : 178

Get Book Here

Book Description
This book contains the proceedings of the AMS Special Session on Vertex Algebras and Geometry, held from October 8–9, 2016, and the mini-conference on Vertex Algebras, held from October 10–11, 2016, in Denver, Colorado. The papers cover vertex algebras in connection with geometry and tensor categories, with topics in vertex rings, chiral algebroids, the Higgs branch conjecture, and applicability and use of vertex tensor categories.

Generalized Vertex Algebras and Relative Vertex Operators

Generalized Vertex Algebras and Relative Vertex Operators PDF Author: Chongying Dong
Publisher: Springer Science & Business Media
ISBN: 1461203538
Category : Mathematics
Languages : en
Pages : 207

Get Book Here

Book Description
The rapidly-evolving theory of vertex operator algebras provides deep insight into many important algebraic structures. Vertex operator algebras can be viewed as "complex analogues" of both Lie algebras and associative algebras. The monograph is written in a n accessible and self-contained manner, with detailed proofs and with many examples interwoven through the axiomatic treatment as motivation and applications. It will be useful for research mathematicians and theoretical physicists working the such fields as representation theory and algebraic structure sand will provide the basis for a number of graduate courses and seminars on these and related topics.

GROUP 24

GROUP 24 PDF Author: J.P Gazeau
Publisher: CRC Press
ISBN: 1482269074
Category : Mathematics
Languages : en
Pages : 997

Get Book Here

Book Description
As a record of an international meeting devoted to the physical and mathematical aspects of group theory, GROUP 24: Physical and Mathematical Aspects of Symmetries provides an important selection of informative articles describing recent advances in the field. The applications of group theory presented in this book deal not only with the traditional fields of physics, but also include such disciplines as chemistry and biology. Plenary session contributions are represented by 18 longer articles, followed by nearly 200 shorter articles. The book also presents coherent states, wavelets, and applications and quantum group theory and integrable systems in two separate sections.

Quantum Fields and Strings: A Course for Mathematicians

Quantum Fields and Strings: A Course for Mathematicians PDF Author: Pierre Deligne
Publisher: American Mathematical Society
ISBN: 0821820133
Category : Mathematics
Languages : en
Pages : 801

Get Book Here

Book Description
A run-away bestseller from the moment it hit the market in late 1999. This impressive, thick softcover offers mathematicians and mathematical physicists the opportunity to learn about the beautiful and difficult subjects of quantum field theory and string theory. Cover features an intriguing cartoon that will bring a smile to its intended audience.

Constructive Quantum Field Theory II

Constructive Quantum Field Theory II PDF Author: G. Velo
Publisher: Springer Science & Business Media
ISBN: 1468458388
Category : Science
Languages : en
Pages : 344

Get Book Here

Book Description
The seventh Ettore Majorana International School of Mathematical Physics was :Jeld at the Centro della Cultura Scientifica Erice. Sicily, 1-15 July 1988. The present volume collects lecture notes on the session which was entitled Con8tructive Quantum Field Theory lI. The II refers to the fact that the first such school in 1973 was devoted ,0 the same subject. The school was a NATO Advanced Study Institute sponsored Jy the Italian Ministry of Scientific and Technological Research and the Regional 3icilian Government. At the time of the 1973 Erice School on Constructive Field Theory, the speakers :ould summarize a decade of effort on the solution of superrenormalizable models in two dimensional space-time leading to the verification of the axioms of relativistic :J. uantum field theory for these examples. The resulting lecture notes have proved ,0 be exceptionally useful and are still in print. In the decade and a half that have ~lapsed since that time, there has been much hard work with the ultimate objective of providing a rigorous mathematical foundation for the quantum field theories in four iimensional space-time that summarize a large fraction of our current understanding )f elementary particle physics: QCD and the electroweak theory. The lecture notes )f the 1988 school record the fact that, although this objective has not been reached, Important progress has been made. The ultraviolet stability of Yang-Mills theory In four dimensions has been treated and renormalizable (not superrenormalizable) models in two dimensional space-time, Gross-Neveu models, have been solved.

Introduction to String Theory

Introduction to String Theory PDF Author: Sergio Cecotti
Publisher: Springer Nature
ISBN: 3031365305
Category : Science
Languages : en
Pages : 846

Get Book Here

Book Description
Graduate students typically enter into courses on string theory having little to no familiarity with the mathematical background so crucial to the discipline. As such, this book, based on lecture notes, edited and expanded, from the graduate course taught by the author at SISSA and BIMSA, places particular emphasis on said mathematical background. The target audience for the book includes students of both theoretical physics and mathematics. This explains the book’s "strange" style: on the one hand, it is highly didactic and explicit, with a host of examples for the physicists, but, in addition, there are also almost 100 separate technical boxes, appendices, and starred sections, in which matters discussed in the main text are put into a broader mathematical perspective, while deeper and more rigorous points of view (particularly those from the modern era) are presented. The boxes also serve to further shore up the reader’s understanding of the underlying math. In writing this book, the author’s goal was not to achieve any sort of definitive conciseness, opting instead for clarity and "completeness". To this end, several arguments are presented more than once from different viewpoints and in varying contexts.

Quantum Mathematical Physics

Quantum Mathematical Physics PDF Author: Felix Finster
Publisher: Birkhäuser
ISBN: 331926902X
Category : Science
Languages : en
Pages : 517

Get Book Here

Book Description
Quantum physics has been highly successful for more than 90 years. Nevertheless, a rigorous construction of interacting quantum field theory is still missing. Moreover, it is still unclear how to combine quantum physics and general relativity in a unified physical theory. Attacking these challenging problems of contemporary physics requires highly advanced mathematical methods as well as radically new physical concepts. This book presents different physical ideas and mathematical approaches in this direction. It contains a carefully selected cross-section of lectures which took place in autumn 2014 at the sixth conference ``Quantum Mathematical Physics - A Bridge between Mathematics and Physics'' in Regensburg, Germany. In the tradition of the other proceedings covering this series of conferences, a special feature of this book is the exposition of a wide variety of approaches, with the intention to facilitate a comparison. The book is mainly addressed to mathematicians and physicists who are interested in fundamental questions of mathematical physics. It allows the reader to obtain a broad and up-to-date overview of a fascinating active research area.

Non-perturbative Quantum Field Theory: Mathematical Aspects And Applications

Non-perturbative Quantum Field Theory: Mathematical Aspects And Applications PDF Author: Jurg Frohlich
Publisher: World Scientific
ISBN: 9814506567
Category :
Languages : en
Pages : 855

Get Book Here

Book Description
Compiled to illustrate the recent history of Quantum Field Theory and its trends, this collection of selected reprints by Jürg Fröhlich, a leading theoretician in the field, is a comprehensive guide of the more mathematical aspects of the subject. Results and methods of the past fifteen years are reviewed. The analytical methods employed are non-perturbative and, for the larger part, mathematically rigorous. Most articles are review articles surveying certain important developments in quantum field theory and guiding the reader towards the original literature.The volume begins with a comprehensive introduction by Jürg Fröhlich.The theory of phase transitions and continuous symmetry breaking is reviewed in the first section. The second section discusses the non-perturbative quantization of topological solitons. The third section is devoted to the study of gauge fields. A paper on the triviality of λϖ4 — theory in four and more dimensions is found in the fourth section, while the fifth contains two articles on “random geometry”. The sixth and final part addresses topics in low-dimensional quantum field theory, including braid statistics, two-dimensional conformal field theory and an application to condensed matter theory.