Author: Ulrich Libbrecht
Publisher: Courier Corporation
ISBN: 0486446190
Category : Mathematics
Languages : en
Pages : 594
Book Description
An exploration of the life and work of the thirteenth-century mathematician Ch'in, this fascinating book examines a range of mathematical issues that reflect Chinese life of a millennium ago. Its first part consists of four closely related studies of Ch'in and his work. The first study brings together what is known of the mathematician's life and of the history of his only extant work, the Shu-shu chiu-chang. Subsequent studies examine the entire range of mathematical techniques and problems found within Ch'in's book. The core of this book consists of an in-depth study of what modern mathematicians still refer to as the Chinese remainder theorem for the solution of indeterminate equations of the first degree. This was Ch'in's most original contribution to mathematics--so original that no one could correctly explain Ch'in's procedure until the early nineteenth century. This volume's concluding study unites information on artisanal, economic, administrative, and military affairs dispersed throughout Ch'in's writings, providing rare insights into thirteenth-century China.
Chinese Mathematics in the Thirteenth Century
Author: Ulrich Libbrecht
Publisher: Courier Corporation
ISBN: 0486446190
Category : Mathematics
Languages : en
Pages : 594
Book Description
An exploration of the life and work of the thirteenth-century mathematician Ch'in, this fascinating book examines a range of mathematical issues that reflect Chinese life of a millennium ago. Its first part consists of four closely related studies of Ch'in and his work. The first study brings together what is known of the mathematician's life and of the history of his only extant work, the Shu-shu chiu-chang. Subsequent studies examine the entire range of mathematical techniques and problems found within Ch'in's book. The core of this book consists of an in-depth study of what modern mathematicians still refer to as the Chinese remainder theorem for the solution of indeterminate equations of the first degree. This was Ch'in's most original contribution to mathematics--so original that no one could correctly explain Ch'in's procedure until the early nineteenth century. This volume's concluding study unites information on artisanal, economic, administrative, and military affairs dispersed throughout Ch'in's writings, providing rare insights into thirteenth-century China.
Publisher: Courier Corporation
ISBN: 0486446190
Category : Mathematics
Languages : en
Pages : 594
Book Description
An exploration of the life and work of the thirteenth-century mathematician Ch'in, this fascinating book examines a range of mathematical issues that reflect Chinese life of a millennium ago. Its first part consists of four closely related studies of Ch'in and his work. The first study brings together what is known of the mathematician's life and of the history of his only extant work, the Shu-shu chiu-chang. Subsequent studies examine the entire range of mathematical techniques and problems found within Ch'in's book. The core of this book consists of an in-depth study of what modern mathematicians still refer to as the Chinese remainder theorem for the solution of indeterminate equations of the first degree. This was Ch'in's most original contribution to mathematics--so original that no one could correctly explain Ch'in's procedure until the early nineteenth century. This volume's concluding study unites information on artisanal, economic, administrative, and military affairs dispersed throughout Ch'in's writings, providing rare insights into thirteenth-century China.
A History of Chinese Mathematics
Author: Jean-Claude Martzloff
Publisher: Springer
ISBN: 3540337830
Category : Mathematics
Languages : en
Pages : 491
Book Description
This book is made up of two parts, the first devoted to general, historical and cultural background, and the second to the development of each subdiscipline that together comprise Chinese mathematics. The book is uniquely accessible, both as a topical reference work, and also as an overview that can be read and reread at many levels of sophistication by both sinologists and mathematicians alike.
Publisher: Springer
ISBN: 3540337830
Category : Mathematics
Languages : en
Pages : 491
Book Description
This book is made up of two parts, the first devoted to general, historical and cultural background, and the second to the development of each subdiscipline that together comprise Chinese mathematics. The book is uniquely accessible, both as a topical reference work, and also as an overview that can be read and reread at many levels of sophistication by both sinologists and mathematicians alike.
The development of mathematics in China and Japan
Author: Yoshio Mikami
Publisher:
ISBN:
Category : Mathematics, Chinese
Languages : en
Pages : 366
Book Description
Publisher:
ISBN:
Category : Mathematics, Chinese
Languages : en
Pages : 366
Book Description
The Mathematics of Egypt, Mesopotamia, China, India, and Islam
Author: Victor J. Katz
Publisher: Princeton University Press
ISBN: 9780691114859
Category : Mathematics
Languages : en
Pages : 712
Book Description
In recent decades it has become obvious that mathematics has always been a worldwide activity. But this is the first book to provide a substantial collection of English translations of key mathematical texts from the five most important ancient and medieval non-Western mathematical cultures, and to put them into full historical and mathematical context. The Mathematics of Egypt, Mesopotamia, China, India, and Islam gives English readers a firsthand understanding and appreciation of these cultures' important contributions to world mathematics. The five section authors--Annette Imhausen (Egypt), Eleanor Robson (Mesopotamia), Joseph Dauben (China), Kim Plofker (India), and J. Lennart Berggren (Islam)--are experts in their fields. Each author has selected key texts and in many cases provided new translations. The authors have also written substantial section introductions that give an overview of each mathematical culture and explanatory notes that put each selection into context. This authoritative commentary allows readers to understand the sometimes unfamiliar mathematics of these civilizations and the purpose and significance of each text. Addressing a critical gap in the mathematics literature in English, this book is an essential resource for anyone with at least an undergraduate degree in mathematics who wants to learn about non-Western mathematical developments and how they helped shape and enrich world mathematics. The book is also an indispensable guide for mathematics teachers who want to use non-Western mathematical ideas in the classroom.
Publisher: Princeton University Press
ISBN: 9780691114859
Category : Mathematics
Languages : en
Pages : 712
Book Description
In recent decades it has become obvious that mathematics has always been a worldwide activity. But this is the first book to provide a substantial collection of English translations of key mathematical texts from the five most important ancient and medieval non-Western mathematical cultures, and to put them into full historical and mathematical context. The Mathematics of Egypt, Mesopotamia, China, India, and Islam gives English readers a firsthand understanding and appreciation of these cultures' important contributions to world mathematics. The five section authors--Annette Imhausen (Egypt), Eleanor Robson (Mesopotamia), Joseph Dauben (China), Kim Plofker (India), and J. Lennart Berggren (Islam)--are experts in their fields. Each author has selected key texts and in many cases provided new translations. The authors have also written substantial section introductions that give an overview of each mathematical culture and explanatory notes that put each selection into context. This authoritative commentary allows readers to understand the sometimes unfamiliar mathematics of these civilizations and the purpose and significance of each text. Addressing a critical gap in the mathematics literature in English, this book is an essential resource for anyone with at least an undergraduate degree in mathematics who wants to learn about non-Western mathematical developments and how they helped shape and enrich world mathematics. The book is also an indispensable guide for mathematics teachers who want to use non-Western mathematical ideas in the classroom.
A History of Japanese Mathematics
Author: David Eugene Smith
Publisher:
ISBN:
Category : Mathematics, Japanese
Languages : en
Pages : 328
Book Description
Publisher:
ISBN:
Category : Mathematics, Japanese
Languages : en
Pages : 328
Book Description
The Chinese Roots of Linear Algebra
Author: Roger Hart
Publisher: JHU Press
ISBN: 0801899583
Category : Mathematics
Languages : en
Pages : 304
Book Description
A monumental accomplishment in the history of non-Western mathematics, The Chinese Roots of Linear Algebra explains the fundamentally visual way Chinese mathematicians understood and solved mathematical problems. It argues convincingly that what the West "discovered" in the sixteenth and seventeenth centuries had already been known to the Chinese for 1,000 years. Accomplished historian and Chinese-language scholar Roger Hart examines Nine Chapters of Mathematical Arts—the classic ancient Chinese mathematics text—and the arcane art of fangcheng, one of the most significant branches of mathematics in Imperial China. Practiced between the first and seventeenth centuries by anonymous and most likely illiterate adepts, fangcheng involves manipulating counting rods on a counting board. It is essentially equivalent to the solution of systems of N equations in N unknowns in modern algebra, and its practice, Hart reveals, was visual and algorithmic. Fangcheng practitioners viewed problems in two dimensions as an array of numbers across counting boards. By "cross multiplying" these, they derived solutions of systems of linear equations that are not found in ancient Greek or early European mathematics. Doing so within a column equates to Gaussian elimination, while the same operation among individual entries produces determinantal-style solutions. Mathematicians and historians of mathematics and science will find in The Chinese Roots of Linear Algebra new ways to conceptualize the intellectual development of linear algebra.
Publisher: JHU Press
ISBN: 0801899583
Category : Mathematics
Languages : en
Pages : 304
Book Description
A monumental accomplishment in the history of non-Western mathematics, The Chinese Roots of Linear Algebra explains the fundamentally visual way Chinese mathematicians understood and solved mathematical problems. It argues convincingly that what the West "discovered" in the sixteenth and seventeenth centuries had already been known to the Chinese for 1,000 years. Accomplished historian and Chinese-language scholar Roger Hart examines Nine Chapters of Mathematical Arts—the classic ancient Chinese mathematics text—and the arcane art of fangcheng, one of the most significant branches of mathematics in Imperial China. Practiced between the first and seventeenth centuries by anonymous and most likely illiterate adepts, fangcheng involves manipulating counting rods on a counting board. It is essentially equivalent to the solution of systems of N equations in N unknowns in modern algebra, and its practice, Hart reveals, was visual and algorithmic. Fangcheng practitioners viewed problems in two dimensions as an array of numbers across counting boards. By "cross multiplying" these, they derived solutions of systems of linear equations that are not found in ancient Greek or early European mathematics. Doing so within a column equates to Gaussian elimination, while the same operation among individual entries produces determinantal-style solutions. Mathematicians and historians of mathematics and science will find in The Chinese Roots of Linear Algebra new ways to conceptualize the intellectual development of linear algebra.
Fibonacci’s Liber Abaci
Author: Laurence Sigler
Publisher: Springer Science & Business Media
ISBN: 1461300797
Category : Mathematics
Languages : en
Pages : 736
Book Description
First published in 1202, Fibonacci’s Liber Abaci was one of the most important books on mathematics in the Middle Ages, introducing Arabic numerals and methods throughout Europe. This is the first translation into a modern European language, of interest not only to historians of science but also to all mathematicians and mathematics teachers interested in the origins of their methods.
Publisher: Springer Science & Business Media
ISBN: 1461300797
Category : Mathematics
Languages : en
Pages : 736
Book Description
First published in 1202, Fibonacci’s Liber Abaci was one of the most important books on mathematics in the Middle Ages, introducing Arabic numerals and methods throughout Europe. This is the first translation into a modern European language, of interest not only to historians of science but also to all mathematicians and mathematics teachers interested in the origins of their methods.
Mapping the Chinese and Islamic Worlds
Author: Hyunhee Park
Publisher: Cambridge University Press
ISBN: 1107018684
Category : History
Languages : en
Pages : 305
Book Description
This book documents the relationship and wisdom of Asian cartographers in the Islamic and Chinese worlds before the Europeans arrived.
Publisher: Cambridge University Press
ISBN: 1107018684
Category : History
Languages : en
Pages : 305
Book Description
This book documents the relationship and wisdom of Asian cartographers in the Islamic and Chinese worlds before the Europeans arrived.
The Nine Chapters on the Mathematical Art
Author: Kangshen Shen
Publisher: Oxford University Press, USA
ISBN: 9780198539360
Category : Language Arts & Disciplines
Languages : en
Pages : 636
Book Description
The Nine Chapters on the Mathematical Art has been the most important mathematical source in China for the past 2000 years, comparable in significance to Euclid's Elements in the West. The Nine Chapters quickly acquired a distinguished reputation, and was the standard mathematics textbook in China and the surrounding regions until Western science was introduced in about 1600. This volume contains the first complete English translation of the Nine Chapters, together with the illuminating commentary of Liu Hui written in the 3rd century AD and other early century commentaries and further insights provided by the translators. The Nine Chapters contains 246 problems and their solutions, which fall into nine categories that are firmly based on practical needs. There are methods for solving problems in areas such as land measurement, construction, agriculture, commerce, and taxation, while the Chinese commentators provide the algorithms needed to solve the problems, and explanations of how the algorithms work. The translators' commentary provides clear and accessible background material for the Western reader, explanations of technicalities, and notes on the treatment of similar or identical mathematical problems in other countries. This first, full-English translation gives us an idea of the distinctive style and important contributions that have been made by traditional Chinese mathematics.
Publisher: Oxford University Press, USA
ISBN: 9780198539360
Category : Language Arts & Disciplines
Languages : en
Pages : 636
Book Description
The Nine Chapters on the Mathematical Art has been the most important mathematical source in China for the past 2000 years, comparable in significance to Euclid's Elements in the West. The Nine Chapters quickly acquired a distinguished reputation, and was the standard mathematics textbook in China and the surrounding regions until Western science was introduced in about 1600. This volume contains the first complete English translation of the Nine Chapters, together with the illuminating commentary of Liu Hui written in the 3rd century AD and other early century commentaries and further insights provided by the translators. The Nine Chapters contains 246 problems and their solutions, which fall into nine categories that are firmly based on practical needs. There are methods for solving problems in areas such as land measurement, construction, agriculture, commerce, and taxation, while the Chinese commentators provide the algorithms needed to solve the problems, and explanations of how the algorithms work. The translators' commentary provides clear and accessible background material for the Western reader, explanations of technicalities, and notes on the treatment of similar or identical mathematical problems in other countries. This first, full-English translation gives us an idea of the distinctive style and important contributions that have been made by traditional Chinese mathematics.
The History of Mathematical Proof in Ancient Traditions
Author: Karine Chemla
Publisher: Cambridge University Press
ISBN: 1139510584
Category : Philosophy
Languages : en
Pages : 522
Book Description
This radical, profoundly scholarly book explores the purposes and nature of proof in a range of historical settings. It overturns the view that the first mathematical proofs were in Greek geometry and rested on the logical insights of Aristotle by showing how much of that view is an artefact of nineteenth-century historical scholarship. It documents the existence of proofs in ancient mathematical writings about numbers and shows that practitioners of mathematics in Mesopotamian, Chinese and Indian cultures knew how to prove the correctness of algorithms, which are much more prominent outside the limited range of surviving classical Greek texts that historians have taken as the paradigm of ancient mathematics. It opens the way to providing the first comprehensive, textually based history of proof.
Publisher: Cambridge University Press
ISBN: 1139510584
Category : Philosophy
Languages : en
Pages : 522
Book Description
This radical, profoundly scholarly book explores the purposes and nature of proof in a range of historical settings. It overturns the view that the first mathematical proofs were in Greek geometry and rested on the logical insights of Aristotle by showing how much of that view is an artefact of nineteenth-century historical scholarship. It documents the existence of proofs in ancient mathematical writings about numbers and shows that practitioners of mathematics in Mesopotamian, Chinese and Indian cultures knew how to prove the correctness of algorithms, which are much more prominent outside the limited range of surviving classical Greek texts that historians have taken as the paradigm of ancient mathematics. It opens the way to providing the first comprehensive, textually based history of proof.