Chemistry and Physics of Fracture

Chemistry and Physics of Fracture PDF Author: R.M. Latanision
Publisher: Springer Science & Business Media
ISBN: 9400936656
Category : Technology & Engineering
Languages : en
Pages : 726

Get Book Here

Book Description
For many years it has been recognized that engineering materials that are-tough and ductile can be rendered susceptible to premature fracture through their reaction with the environment. Over 100 years ago, Reynolds associated hydrogen with detrimental effects on the ductility of iron. The "season cracking" of brass has been a known problem for dec ades, but the mechanisms for this stress-corrosion process are only today being elucidated. In more recent times, the mechanical properties of most engineering materials have been shown to be adversely affected by hydrogen embrittlement or stress-corrosion cracking. Early studies of environmental effects on crack growth attempted to identify a unified theory to explain the crack growth behavior of groups of materials in a variety of environments. It is currently understood that there are numerous stress-corrosion processes some of which may be common to several materials, but that the crack growth behavior of a given material is dependent on microstructure, microchemistry, mechanics, surface chemistry, and solution chemistry. Although the mechanism by which various chemical species in the environment may cause cracks to propagate in some materials but not in others is very complex, the net result of all environmentally induced fracture is the reduction in the force and energy associated with the tensile or shear separation of atoms at the crack tip.

Chemistry and Physics of Fracture

Chemistry and Physics of Fracture PDF Author: R.M. Latanision
Publisher: Springer Science & Business Media
ISBN: 9400936656
Category : Technology & Engineering
Languages : en
Pages : 726

Get Book Here

Book Description
For many years it has been recognized that engineering materials that are-tough and ductile can be rendered susceptible to premature fracture through their reaction with the environment. Over 100 years ago, Reynolds associated hydrogen with detrimental effects on the ductility of iron. The "season cracking" of brass has been a known problem for dec ades, but the mechanisms for this stress-corrosion process are only today being elucidated. In more recent times, the mechanical properties of most engineering materials have been shown to be adversely affected by hydrogen embrittlement or stress-corrosion cracking. Early studies of environmental effects on crack growth attempted to identify a unified theory to explain the crack growth behavior of groups of materials in a variety of environments. It is currently understood that there are numerous stress-corrosion processes some of which may be common to several materials, but that the crack growth behavior of a given material is dependent on microstructure, microchemistry, mechanics, surface chemistry, and solution chemistry. Although the mechanism by which various chemical species in the environment may cause cracks to propagate in some materials but not in others is very complex, the net result of all environmentally induced fracture is the reduction in the force and energy associated with the tensile or shear separation of atoms at the crack tip.

Physics and Chemistry of Fracture

Physics and Chemistry of Fracture PDF Author: George Julian Dienes
Publisher: Pergamon
ISBN: 9780080362311
Category : Fracture mechanics
Languages : en
Pages : 193

Get Book Here

Book Description


Fracture Mechanics

Fracture Mechanics PDF Author: Robert P. Wei
Publisher: Cambridge University Press
ISBN: 1139484281
Category : Science
Languages : en
Pages : 231

Get Book Here

Book Description
Fracture and 'slow' crack growth reflect the response of a material (i.e. its microstructure) to the conjoint actions of mechanical and chemical driving forces and are affected by temperature. There is therefore a need for quantitative understanding and modeling of the influences of chemical and thermal environments and of microstructure, in terms of the key internal and external variables, and for their incorporation into design and probabilistic implications. This text, which the author has used in a fracture mechanics course for advanced undergraduate and graduate students, is based on the work of the author's Lehigh University team whose integrative research combined fracture mechanics, surface and electrochemistry, materials science, and probability and statistics to address a range of fracture safety and durability issues on aluminum, ferrous, nickel, and titanium alloys and ceramics. Examples are included to highlight the approach and applicability of the findings in practical durability and reliability problems.

Fracture Mechanics

Fracture Mechanics PDF Author: Robert Peh-ying Wei
Publisher:
ISBN:
Category : Fracture mechanics
Languages : en
Pages : 214

Get Book Here

Book Description
"Fracture and 'slow' crack growth reflect the response of a material (i.e., its microstructure) to the conjoint actions of mechanical and chemical driving forces and are affected by temperature. There is therefore a need for quantitative understanding and modeling of the influences of chemical and thermal environments and of microstructure, in terms of the key internal and external variables, and for their incorporation into design and probabilistic implications. This text, which the author has used in a fracture mechanics course for advanced undergraduate and graduate students, is based on the work of the author's Lehigh University team whose integrative research combined fracture mechanics, surface and electrochemistry, materials science, and probability and statistics to address a range of fracture safety and durability issues on aluminum, ferrous, nickel, and titanium alloys and ceramics. Examples are included to highlight the approach and applicability of the findings in practical durability and reliability problems"--Provided by publisher.

Statistical Physics of Fracture and Breakdown in Disordered Systems

Statistical Physics of Fracture and Breakdown in Disordered Systems PDF Author: Bikas K. Chakrabarti
Publisher: Oxford University Press
ISBN: 9780198520566
Category : Language Arts & Disciplines
Languages : en
Pages : 184

Get Book Here

Book Description
Under extreme conditions the mechanical or electrical properties of solids tend to destabilize, leading to failure or breakdown. These instabilities often nucleate or spread from disorders in the structure of the solid. This book by two experts in the field investigates current techniques for modeling these failure and breakdown processes. It illustrates the basic modeling principles through a series of computer and laboratory simulations and `table top' experiments. The book centers on three important case studies: electrical failures like fuse and dielectric breakdown; mechanical fractures; and earthquakes, which exhibit dynamic failure. The material will interest all graduate students and researchers studying disordered systems, whether their focus is the mechanical failure of solids, the electrical breakdown of conductors, or earthquake mechanics.

Physical Aspects of Fracture

Physical Aspects of Fracture PDF Author: Elisabeth Bouchaud
Publisher: Springer Science & Business Media
ISBN: 9401006563
Category : Science
Languages : en
Pages : 369

Get Book Here

Book Description
The main scope of this Cargese NATO Advanced Study Institute (June 5-17 2000) was to bring together a number of international experts, covering a large spectrum of the various Physical Aspects of Fracture. As a matter of fact, lecturers as well as participants were coming from various scientific communities: mechanics, physics, materials science, with the common objective of progressing towards a multi-scale description of fracture. This volume includes papers on most materials of practical interest: from concrete to ceramics through metallic alloys, glasses, polymers and composite materials. The classical fields of damage and fracture mechanisms are addressed (critical and sub-critical quasi-static crack propagation, stress corrosion, fatigue, fatigue-corrosion . . . . as well as dynamic fracture). Brittle and ductile fractures are considered and a balance has been carefully kept between experiments, simulations and theoretical models, and between the contributions of the various communities. New topics in damage and fracture mechanics - the effect of disorder and statistical aspects, dynamic fracture, friction and fracture of interfaces - were also explored. This large overview on the Physical Aspects of Fracture shows that the old barriers built between the different scales will soon "fracture". It is no more unrealistic to imagine that a crack initiated through a molecular dynamics description could be propagated at the grain level thanks to dislocation dynamics included in a crystal plasticity model, itself implemented in a finite element code. Linking what happens at the atomic scale to fracture of structures as large as a dam is the new emerging challenge.

New Directions in Guided Wave and Coherent Optics

New Directions in Guided Wave and Coherent Optics PDF Author: D.B. Ostrowsky
Publisher: Springer
ISBN: 9789024726899
Category : Technology & Engineering
Languages : en
Pages : 684

Get Book Here

Book Description
As optical fiber communication systems have moved out of the laboratory and into commercial use over the past several years, the general field of guided wave and coherent optics has undergone a radical transformation. Research in optical communication has turned heavily towards single-mode technology and, totally new phenomena and applications of the existing technology, outside the communication field, have begun to proliferate. It was for this reason that we decided to organize a NATO Advanced Study Institute assembling the leading workers in this new domain, in order to define the state of the art, and, develop an idea of the new directions the field might take. The lectures and seminars presented at this Advanced Study Institute form the basis for this book. The subjects treated can be roughly grouped as : - New phenomena in optical fibers such as non-linear effects, soliton propagation and polarization conservation. - New applications of fibers, to measurements of rotation pressure, temperature etc ... and medical uses. - Advanced and exploratory work on single-mode fiber communica tion systems including the use of coherent transmission schemes and optical amplification. - Recent developments of optical information treatment based on four-wave mixing. - Integrated optical devices and technologies including bistable devices, parametric oscillators, and optical logic. In addition to these major topics, a number of national reviews and specialized seminars treating new guided wave structures and materials are included. The co-editors admit being rather pleased with the result.

Polymer Fracture

Polymer Fracture PDF Author: Hans-Henning Kausch
Publisher: Springer Science & Business Media
ISBN: 3642696287
Category : Technology & Engineering
Languages : en
Pages : 467

Get Book Here

Book Description
The first edition of this book had been written with the special aim to provide the necessary information for an understanding of the deformation and scission of chain molecules and its role in polymer fracture. In this field there had been an intense ac tivity in the sixties and early seventies. The new results from spectroscopical (ESR, IR) and fracture mechanics methods reported in the first edition had complemented in a very successful way the conventional interpretations of fracture behavior. The extremely friendly reception of this book by the polymer community has shown that the subject was timely chosen and that the treatment had satisfied a need. In view of the importance of a molecular interpretation of fracture phenomena and of the continued demand for this book which still is the only one of its kind, a second edition has become necessary. The aims of the second edition will be similar to those of the first: it will be at tempted to reference and evaluate completely the literature on stress-induced chain scission, now up to 1985/86. References on other subjects such as morphology, vis coelasticity, plastiC deformation and fracture mechanics, where the treatment was never meant to be exhaustive, have remained selective, but they have been updated.

Fracture Mechanics

Fracture Mechanics PDF Author: Alexander Balankin
Publisher: Trans Tech Publications Ltd
ISBN: 3038133450
Category : Technology & Engineering
Languages : en
Pages : 124

Get Book Here

Book Description
This work comprises selected peer-reviewed papers on the topic of, “Fracture Mechanics”. Volume is indexed by Thomson Reuters CPCI-S (WoS). The volume covers topics related to all aspects of the mechanics and phenomena of fracture, fatigue, fracture mechanics approach, strength of materials, failure analysis and general structural integrity. The aim of this collection was to bring together state-of-the-art developments related to fracture mechanics and in this it has succeeded admirably.

Atomistics of Fracture

Atomistics of Fracture PDF Author: R.M. Latanison
Publisher: Springer Science & Business Media
ISBN: 1461335000
Category : Science
Languages : en
Pages : 1043

Get Book Here

Book Description
It is now more than 100 years since certain detrimental effects on the ductility of iron were first associated with the presence of hydrogen. Not only is hydrogen embrittlement still a major industri al problem, but it is safe to say that in a mechanistic sense we still do not know what hydrogen (but not nitrogen or oxygen, for example) does on an atomic scale to induce this degradation. The same applies to other examples of environmentally-induced fracture: what is it about the ubiquitous chloride ion that induces premature catastrophic fracture (stress corrosion cracking) of ordinarily ductile austenitic stainless steels? Why, moreover, are halide ions troublesome but the nitrate or sulfate anions not deleterious to such stainless steels? Likewise, why are some solid metals embrit tled catastrophically by same liquid metals (liquid metal embrit tlement) - copper and aluminum, for example, are embrittled by liquid mercury. In short, despite all that we may know about the materials science and mechanics of fracture on a macroscopic scale, we know little about the atomistics of fracture in the absence of environmental interactions and even less when embrittlement phe nomena such as those described above are involved. On the other hand, it is interesting to note that physical chemists and surface chemists also have interests in the same kinds of interactions that occur on an atomic scale when metals such as nickel or platinum are used, for example, as catalysts for chemical reactions.