Author: Paul L. Houston
Publisher: Courier Corporation
ISBN: 0486131696
Category : Science
Languages : en
Pages : 354
Book Description
DIVThis text teaches the principles underlying modern chemical kinetics in a clear, direct fashion, using several examples to enhance basic understanding. Solutions to selected problems. 2001 edition. /div
Chemical Kinetics and Reaction Dynamics
Author: Paul L. Houston
Publisher: Courier Corporation
ISBN: 0486131696
Category : Science
Languages : en
Pages : 354
Book Description
DIVThis text teaches the principles underlying modern chemical kinetics in a clear, direct fashion, using several examples to enhance basic understanding. Solutions to selected problems. 2001 edition. /div
Publisher: Courier Corporation
ISBN: 0486131696
Category : Science
Languages : en
Pages : 354
Book Description
DIVThis text teaches the principles underlying modern chemical kinetics in a clear, direct fashion, using several examples to enhance basic understanding. Solutions to selected problems. 2001 edition. /div
Chemical Kinetics and Reaction Dynamics
Author: Santosh K. Upadhyay
Publisher: Springer Science & Business Media
ISBN: 1402045476
Category : Science
Languages : en
Pages : 256
Book Description
Chemical Kinetics and Reaction Dynamics brings together the major facts and theories relating to the rates with which chemical reactions occur from both the macroscopic and microscopic point of view. This book helps the reader achieve a thorough understanding of the principles of chemical kinetics and includes: Detailed stereochemical discussions of reaction steps Classical theory based calculations of state-to-state rate constants A collection of matters on kinetics of various special reactions such as micellar catalysis, phase transfer catalysis, inhibition processes, oscillatory reactions, solid-state reactions, and polymerization reactions at a single source. The growth of the chemical industry greatly depends on the application of chemical kinetics, catalysts and catalytic processes. This volume is therefore an invaluable resource for all academics, industrial researchers and students interested in kinetics, molecular reaction dynamics, and the mechanisms of chemical reactions.
Publisher: Springer Science & Business Media
ISBN: 1402045476
Category : Science
Languages : en
Pages : 256
Book Description
Chemical Kinetics and Reaction Dynamics brings together the major facts and theories relating to the rates with which chemical reactions occur from both the macroscopic and microscopic point of view. This book helps the reader achieve a thorough understanding of the principles of chemical kinetics and includes: Detailed stereochemical discussions of reaction steps Classical theory based calculations of state-to-state rate constants A collection of matters on kinetics of various special reactions such as micellar catalysis, phase transfer catalysis, inhibition processes, oscillatory reactions, solid-state reactions, and polymerization reactions at a single source. The growth of the chemical industry greatly depends on the application of chemical kinetics, catalysts and catalytic processes. This volume is therefore an invaluable resource for all academics, industrial researchers and students interested in kinetics, molecular reaction dynamics, and the mechanisms of chemical reactions.
Photochemistry
Author: Oliver Schalk
Publisher: American Chemical Society
ISBN: 0841299072
Category : Science
Languages : en
Pages : 201
Book Description
Photochemistry is an important part of both chemistry and biology and is of great practical significance for the development of sustainable sources of energy. The mechanisms of photochemistry are far from trivial and far from understood. There are limits to how well theory can describe the processes and how well experiments can resolve them. This book aims to provide an overview of state-of-the-art methods for both theoretical development and experimental techniques, with a focus on ultrafast molecular processes and electronic excitation of organic molecules. These fields are active and progress is being made, carried by the increasing speed of computation and the development of new light sources, most notably X-ray sources at large facilities. Alongside these two layers of theoretical development and experimental techniques is a third layer—model building. In this layer, model building tries to find similarities in seemingly unrelated experimental results and deepen our general knowledge of photoinduced processes. Often, progress is made not by cutting-edge techniques but rather by using well-established techniques with a great variety of molecules—this approach promises less glory but is just as important as the first two layers. Examples mentioned in the text are the Woodward–Hoffman rules and the dynamophore concept. All three layers are crucial to push our knowledge further and, eventually, to use it for developing new and more advanced optical devices.
Publisher: American Chemical Society
ISBN: 0841299072
Category : Science
Languages : en
Pages : 201
Book Description
Photochemistry is an important part of both chemistry and biology and is of great practical significance for the development of sustainable sources of energy. The mechanisms of photochemistry are far from trivial and far from understood. There are limits to how well theory can describe the processes and how well experiments can resolve them. This book aims to provide an overview of state-of-the-art methods for both theoretical development and experimental techniques, with a focus on ultrafast molecular processes and electronic excitation of organic molecules. These fields are active and progress is being made, carried by the increasing speed of computation and the development of new light sources, most notably X-ray sources at large facilities. Alongside these two layers of theoretical development and experimental techniques is a third layer—model building. In this layer, model building tries to find similarities in seemingly unrelated experimental results and deepen our general knowledge of photoinduced processes. Often, progress is made not by cutting-edge techniques but rather by using well-established techniques with a great variety of molecules—this approach promises less glory but is just as important as the first two layers. Examples mentioned in the text are the Woodward–Hoffman rules and the dynamophore concept. All three layers are crucial to push our knowledge further and, eventually, to use it for developing new and more advanced optical devices.
Conical Intersections
Author: Wolfgang Domcke
Publisher: World Scientific
ISBN: 9812386726
Category : Science
Languages : en
Pages : 857
Book Description
This invaluable book presents a systematic exposition of the current state of knowledge about conical intersections, which has been elaborated in research papers scattered throughout the chemical physics literature.
Publisher: World Scientific
ISBN: 9812386726
Category : Science
Languages : en
Pages : 857
Book Description
This invaluable book presents a systematic exposition of the current state of knowledge about conical intersections, which has been elaborated in research papers scattered throughout the chemical physics literature.
Chemical Kinetics and Process Dynamics in Aquatic Systems
Author: PatrickL. Brezonik
Publisher: Routledge
ISBN: 1351461508
Category : Science
Languages : en
Pages : 784
Book Description
Chemical Kinetics and Process Dynamics in Aquatic Systems is devoted to chemical reactions and biogeochemical processes in aquatic systems. The book provides a thorough analysis of the principles, mathematics, and analytical tools used in chemical, microbial, and reactor kinetics. It also presents a comprehensive, up-to-date description of the kinetics of important chemical processes in aquatic environments. Aquatic photochemistry and correlation methods (e.g., LFERs and QSARs) to predict process rates are covered. Numerous examples are included, and each chapter has a detailed bibliography and problems sets. The book will be an excellent text/reference for professionals and students in such fields as aquatic chemistry, limnology, aqueous geochemistry, microbial ecology, marine science, environmental and water resources engineering, and geochemistry.
Publisher: Routledge
ISBN: 1351461508
Category : Science
Languages : en
Pages : 784
Book Description
Chemical Kinetics and Process Dynamics in Aquatic Systems is devoted to chemical reactions and biogeochemical processes in aquatic systems. The book provides a thorough analysis of the principles, mathematics, and analytical tools used in chemical, microbial, and reactor kinetics. It also presents a comprehensive, up-to-date description of the kinetics of important chemical processes in aquatic environments. Aquatic photochemistry and correlation methods (e.g., LFERs and QSARs) to predict process rates are covered. Numerous examples are included, and each chapter has a detailed bibliography and problems sets. The book will be an excellent text/reference for professionals and students in such fields as aquatic chemistry, limnology, aqueous geochemistry, microbial ecology, marine science, environmental and water resources engineering, and geochemistry.
A Textbook of Physical Chemistry – Volume 1
Author: Mandeep Dalal
Publisher: Dalal Institute
ISBN: 8193872010
Category : Science
Languages : en
Pages : 432
Book Description
An advanced-level textbook of physical chemistry for the graduate (B.Sc) and postgraduate (M.Sc) students of Indian and foreign universities. This book is a part of four volume series, entitled "A Textbook of Physical Chemistry – Volume I, II, III, IV". CONTENTS: Chapter 1. Quantum Mechanics – I: Postulates of quantum mechanics; Derivation of Schrodinger wave equation; Max-Born interpretation of wave functions; The Heisenberg’s uncertainty principle; Quantum mechanical operators and their commutation relations; Hermitian operators (elementary ideas, quantum mechanical operator for linear momentum, angular momentum and energy as Hermition operator); The average value of the square of Hermitian operators; Commuting operators and uncertainty principle(x & p; E & t); Schrodinger wave equation for a particle in one dimensional box; Evaluation of average position, average momentum and determination of uncertainty in position and momentum and hence Heisenberg’s uncertainty principle; Pictorial representation of the wave equation of a particle in one dimensional box and its influence on the kinetic energy of the particle in each successive quantum level; Lowest energy of the particle. Chapter 2. Thermodynamics – I: Brief resume of first and second Law of thermodynamics; Entropy changes in reversible and irreversible processes; Variation of entropy with temperature, pressure and volume; Entropy concept as a measure of unavailable energy and criteria for the spontaneity of reaction; Free energy, enthalpy functions and their significance, criteria for spontaneity of a process; Partial molar quantities (free energy, volume, heat concept); Gibb’s-Duhem equation. Chapter 3. Chemical Dynamics – I: Effect of temperature on reaction rates; Rate law for opposing reactions of Ist order and IInd order; Rate law for consecutive & parallel reactions of Ist order reactions; Collision theory of reaction rates and its limitations; Steric factor; Activated complex theory; Ionic reactions: single and double sphere models; Influence of solvent and ionic strength; The comparison of collision and activated complex theory. Chapter 4. Electrochemistry – I: Ion-Ion Interactions: The Debye-Huckel theory of ion- ion interactions; Potential and excess charge density as a function of distance from the central ion; Debye Huckel reciprocal length; Ionic cloud and its contribution to the total potential; Debye - Huckel limiting law of activity coefficients and its limitations; Ion-size effect on potential; Ion-size parameter and the theoretical mean-activity coefficient in the case of ionic clouds with finite-sized ions; Debye - Huckel-Onsager treatment for aqueous solutions and its limitations; Debye-Huckel-Onsager theory for non-aqueous solutions; The solvent effect on the mobality at infinite dilution; Equivalent conductivity (Λ) vs. concentration c 1/2 as a function of the solvent; Effect of ion association upon conductivity (Debye- Huckel - Bjerrum equation). Chapter 5. Quantum Mechanics – II: Schrodinger wave equation for a particle in a three dimensional box; The concept of degeneracy among energy levels for a particle in three dimensional box; Schrodinger wave equation for a linear harmonic oscillator & its solution by polynomial method; Zero point energy of a particle possessing harmonic motion and its consequence; Schrodinger wave equation for three dimensional Rigid rotator; Energy of rigid rotator; Space quantization; Schrodinger wave equation for hydrogen atom, separation of variable in polar spherical coordinates and its solution; Principle, azimuthal and magnetic quantum numbers and the magnitude of their values; Probability distribution function; Radial distribution function; Shape of atomic orbitals (s,p & d). Chapter 6. Thermodynamics – II: Classius-Clayperon equation; Law of mass action and its thermodynamic derivation; Third law of thermodynamics (Nernest heat theorem, determination of absolute entropy, unattainability of absolute zero) and its limitation; Phase diagram for two completely miscible components systems; Eutectic systems, Calculation of eutectic point; Systems forming solid compounds Ax By with congruent and incongruent melting points; Phase diagram and thermodynamic treatment of solid solutions. Chapter 7. Chemical Dynamics – II: Chain reactions: hydrogen-bromine reaction, pyrolysis of acetaldehyde, decomposition of ethane; Photochemical reactions (hydrogen - bromine & hydrogen -chlorine reactions); General treatment of chain reactions (ortho-para hydrogen conversion and hydrogen - bromine reactions); Apparent activation energy of chain reactions, Chain length; Rice-Herzfeld mechanism of organic molecules decomposition(acetaldehyde); Branching chain reactions and explosions ( H2-O2 reaction); Kinetics of (one intermediate) enzymatic reaction : Michaelis-Menton treatment; Evaluation of Michaelis 's constant for enzyme-substrate binding by Lineweaver-Burk plot and Eadie-Hofstae methods; Competitive and non-competitive inhibition. Chapter 8. Electrochemistry – II: Ion Transport in Solutions: Ionic movement under the influence of an electric field; Mobility of ions; Ionic drift velocity and its relation with current density; Einstein relation between the absolute mobility and diffusion coefficient; The Stokes- Einstein relation; The Nernst -Einstein equation; Walden’s rule; The Rate-process approach to ionic migration; The Rate process equation for equivalent conductivity; Total driving force for ionic transport, Nernst - Planck Flux equation; Ionic drift and diffusion potential; the Onsager phenomenological equations; The basic equation for the diffusion; Planck-Henderson equation for the diffusion potential.
Publisher: Dalal Institute
ISBN: 8193872010
Category : Science
Languages : en
Pages : 432
Book Description
An advanced-level textbook of physical chemistry for the graduate (B.Sc) and postgraduate (M.Sc) students of Indian and foreign universities. This book is a part of four volume series, entitled "A Textbook of Physical Chemistry – Volume I, II, III, IV". CONTENTS: Chapter 1. Quantum Mechanics – I: Postulates of quantum mechanics; Derivation of Schrodinger wave equation; Max-Born interpretation of wave functions; The Heisenberg’s uncertainty principle; Quantum mechanical operators and their commutation relations; Hermitian operators (elementary ideas, quantum mechanical operator for linear momentum, angular momentum and energy as Hermition operator); The average value of the square of Hermitian operators; Commuting operators and uncertainty principle(x & p; E & t); Schrodinger wave equation for a particle in one dimensional box; Evaluation of average position, average momentum and determination of uncertainty in position and momentum and hence Heisenberg’s uncertainty principle; Pictorial representation of the wave equation of a particle in one dimensional box and its influence on the kinetic energy of the particle in each successive quantum level; Lowest energy of the particle. Chapter 2. Thermodynamics – I: Brief resume of first and second Law of thermodynamics; Entropy changes in reversible and irreversible processes; Variation of entropy with temperature, pressure and volume; Entropy concept as a measure of unavailable energy and criteria for the spontaneity of reaction; Free energy, enthalpy functions and their significance, criteria for spontaneity of a process; Partial molar quantities (free energy, volume, heat concept); Gibb’s-Duhem equation. Chapter 3. Chemical Dynamics – I: Effect of temperature on reaction rates; Rate law for opposing reactions of Ist order and IInd order; Rate law for consecutive & parallel reactions of Ist order reactions; Collision theory of reaction rates and its limitations; Steric factor; Activated complex theory; Ionic reactions: single and double sphere models; Influence of solvent and ionic strength; The comparison of collision and activated complex theory. Chapter 4. Electrochemistry – I: Ion-Ion Interactions: The Debye-Huckel theory of ion- ion interactions; Potential and excess charge density as a function of distance from the central ion; Debye Huckel reciprocal length; Ionic cloud and its contribution to the total potential; Debye - Huckel limiting law of activity coefficients and its limitations; Ion-size effect on potential; Ion-size parameter and the theoretical mean-activity coefficient in the case of ionic clouds with finite-sized ions; Debye - Huckel-Onsager treatment for aqueous solutions and its limitations; Debye-Huckel-Onsager theory for non-aqueous solutions; The solvent effect on the mobality at infinite dilution; Equivalent conductivity (Λ) vs. concentration c 1/2 as a function of the solvent; Effect of ion association upon conductivity (Debye- Huckel - Bjerrum equation). Chapter 5. Quantum Mechanics – II: Schrodinger wave equation for a particle in a three dimensional box; The concept of degeneracy among energy levels for a particle in three dimensional box; Schrodinger wave equation for a linear harmonic oscillator & its solution by polynomial method; Zero point energy of a particle possessing harmonic motion and its consequence; Schrodinger wave equation for three dimensional Rigid rotator; Energy of rigid rotator; Space quantization; Schrodinger wave equation for hydrogen atom, separation of variable in polar spherical coordinates and its solution; Principle, azimuthal and magnetic quantum numbers and the magnitude of their values; Probability distribution function; Radial distribution function; Shape of atomic orbitals (s,p & d). Chapter 6. Thermodynamics – II: Classius-Clayperon equation; Law of mass action and its thermodynamic derivation; Third law of thermodynamics (Nernest heat theorem, determination of absolute entropy, unattainability of absolute zero) and its limitation; Phase diagram for two completely miscible components systems; Eutectic systems, Calculation of eutectic point; Systems forming solid compounds Ax By with congruent and incongruent melting points; Phase diagram and thermodynamic treatment of solid solutions. Chapter 7. Chemical Dynamics – II: Chain reactions: hydrogen-bromine reaction, pyrolysis of acetaldehyde, decomposition of ethane; Photochemical reactions (hydrogen - bromine & hydrogen -chlorine reactions); General treatment of chain reactions (ortho-para hydrogen conversion and hydrogen - bromine reactions); Apparent activation energy of chain reactions, Chain length; Rice-Herzfeld mechanism of organic molecules decomposition(acetaldehyde); Branching chain reactions and explosions ( H2-O2 reaction); Kinetics of (one intermediate) enzymatic reaction : Michaelis-Menton treatment; Evaluation of Michaelis 's constant for enzyme-substrate binding by Lineweaver-Burk plot and Eadie-Hofstae methods; Competitive and non-competitive inhibition. Chapter 8. Electrochemistry – II: Ion Transport in Solutions: Ionic movement under the influence of an electric field; Mobility of ions; Ionic drift velocity and its relation with current density; Einstein relation between the absolute mobility and diffusion coefficient; The Stokes- Einstein relation; The Nernst -Einstein equation; Walden’s rule; The Rate-process approach to ionic migration; The Rate process equation for equivalent conductivity; Total driving force for ionic transport, Nernst - Planck Flux equation; Ionic drift and diffusion potential; the Onsager phenomenological equations; The basic equation for the diffusion; Planck-Henderson equation for the diffusion potential.
Photochemistry
Author: Maurizio Persico
Publisher: Springer
ISBN: 3319899724
Category : Science
Languages : en
Pages : 267
Book Description
This book offers an introduction to photochemistry for students with a minimal background in physical chemistry and molecular quantum mechanics. The focus is from a theoretical perspective and highlights excited state dynamics. The authors, experienced lecturers, describe the main concepts in photochemical and photophysical processes that are used as a basis to interpret classical steady-state experimental results (essentially product branching ratios and quantum yields) and the most advanced time-resolved techniques. A significant portion of the content is devoted to the computational techniques present in quantum chemistry and molecular dynamics.With its short summaries, questions and exercises, this book is aimed at graduate students, while its theoretical focus differentiates it from most introductory textbooks on photochemistry.
Publisher: Springer
ISBN: 3319899724
Category : Science
Languages : en
Pages : 267
Book Description
This book offers an introduction to photochemistry for students with a minimal background in physical chemistry and molecular quantum mechanics. The focus is from a theoretical perspective and highlights excited state dynamics. The authors, experienced lecturers, describe the main concepts in photochemical and photophysical processes that are used as a basis to interpret classical steady-state experimental results (essentially product branching ratios and quantum yields) and the most advanced time-resolved techniques. A significant portion of the content is devoted to the computational techniques present in quantum chemistry and molecular dynamics.With its short summaries, questions and exercises, this book is aimed at graduate students, while its theoretical focus differentiates it from most introductory textbooks on photochemistry.
Dynamics of Gas-surface Interactions
Author: Charles T. Rettner
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 392
Book Description
This book provides a comprehensive overview of what is currently one of the most active areas within chemical physics. It presents the history, status and future direction of the broad field of dynamical studies of gas-surface collisions, with an emphasis on problems of a chemical nature. Dynamics of Gas-Surface Interactions discusses a selection of important topics and provides a balanced picture of the whole field. It is written by experts in the respective subjects and no previous volume has offered such detailed coverage. This book will provide a valuable introduction to the subject for final year undergraduates and graduate students, as well as an important reference work for all those involved in this exciting area.
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 392
Book Description
This book provides a comprehensive overview of what is currently one of the most active areas within chemical physics. It presents the history, status and future direction of the broad field of dynamical studies of gas-surface collisions, with an emphasis on problems of a chemical nature. Dynamics of Gas-Surface Interactions discusses a selection of important topics and provides a balanced picture of the whole field. It is written by experts in the respective subjects and no previous volume has offered such detailed coverage. This book will provide a valuable introduction to the subject for final year undergraduates and graduate students, as well as an important reference work for all those involved in this exciting area.
The Chemical Dynamics and Kinetics of Small Radicals
Author: Kopin Liu
Publisher: World Scientific
ISBN: 9789810229832
Category : Science
Languages : en
Pages : 488
Book Description
This book highlights recent progress in the chemistry of radicals. Developments include the growing use of lasers to generate radicals, the application of lasers to provide state, angular, polarization, energy and real-time resolution in kinetics and dynamics experiments, the development of theories for handling the reactions of radicals, and the simulation of the reaction dynamics of increasingly larger systems for direct comparison to experimental results. The book emphasizes the increasing interaction between experimental dynamics, kinetics and theory. It is appropriate for chemistry graduate students and researchers about to enter the field. However, the discussions of some topics progress to a more advanced level so that even an expert will find the book useful.
Publisher: World Scientific
ISBN: 9789810229832
Category : Science
Languages : en
Pages : 488
Book Description
This book highlights recent progress in the chemistry of radicals. Developments include the growing use of lasers to generate radicals, the application of lasers to provide state, angular, polarization, energy and real-time resolution in kinetics and dynamics experiments, the development of theories for handling the reactions of radicals, and the simulation of the reaction dynamics of increasingly larger systems for direct comparison to experimental results. The book emphasizes the increasing interaction between experimental dynamics, kinetics and theory. It is appropriate for chemistry graduate students and researchers about to enter the field. However, the discussions of some topics progress to a more advanced level so that even an expert will find the book useful.
Resonances in Electron-molecule Scattering, Van Der Waals Complexes, and Reactive Chemical Dynamics
Author: Donald G. Truhlar
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 544
Book Description
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 544
Book Description