Author: AJIT DASH
Publisher:
ISBN: 9781312196186
Category :
Languages : en
Pages : 0
Book Description
The STEP-BY-STEP GUIDE FOR OPENAI AND AZURE OPENAI
Author: AJIT DASH
Publisher:
ISBN: 9781312196186
Category :
Languages : en
Pages : 0
Book Description
Publisher:
ISBN: 9781312196186
Category :
Languages : en
Pages : 0
Book Description
AI and education
Author: Miao, Fengchun
Publisher: UNESCO Publishing
ISBN: 9231004476
Category : Political Science
Languages : en
Pages : 50
Book Description
Artificial Intelligence (AI) has the potential to address some of the biggest challenges in education today, innovate teaching and learning practices, and ultimately accelerate the progress towards SDG 4. However, these rapid technological developments inevitably bring multiple risks and challenges, which have so far outpaced policy debates and regulatory frameworks. This publication offers guidance for policy-makers on how best to leverage the opportunities and address the risks, presented by the growing connection between AI and education. It starts with the essentials of AI: definitions, techniques and technologies. It continues with a detailed analysis of the emerging trends and implications of AI for teaching and learning, including how we can ensure the ethical, inclusive and equitable use of AI in education, how education can prepare humans to live and work with AI, and how AI can be applied to enhance education. It finally introduces the challenges of harnessing AI to achieve SDG 4 and offers concrete actionable recommendations for policy-makers to plan policies and programmes for local contexts. [Publisher summary, ed]
Publisher: UNESCO Publishing
ISBN: 9231004476
Category : Political Science
Languages : en
Pages : 50
Book Description
Artificial Intelligence (AI) has the potential to address some of the biggest challenges in education today, innovate teaching and learning practices, and ultimately accelerate the progress towards SDG 4. However, these rapid technological developments inevitably bring multiple risks and challenges, which have so far outpaced policy debates and regulatory frameworks. This publication offers guidance for policy-makers on how best to leverage the opportunities and address the risks, presented by the growing connection between AI and education. It starts with the essentials of AI: definitions, techniques and technologies. It continues with a detailed analysis of the emerging trends and implications of AI for teaching and learning, including how we can ensure the ethical, inclusive and equitable use of AI in education, how education can prepare humans to live and work with AI, and how AI can be applied to enhance education. It finally introduces the challenges of harnessing AI to achieve SDG 4 and offers concrete actionable recommendations for policy-makers to plan policies and programmes for local contexts. [Publisher summary, ed]
The Future Computed
Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages :
Book Description
Marketing Artificial Intelligence
Author: Paul Roetzer
Publisher: BenBella Books
ISBN: 1637740794
Category : Business & Economics
Languages : en
Pages : 257
Book Description
Artificial intelligence is forecasted to have trillions of dollars of impact on businesses and the economy, yet many marketers struggle to understand what it is and how to apply it in their marketing efforts. The truth is, AI possesses the power to change everything. While AI-powered marketing technologies may never achieve the sci-fi vision of self-running, self-improving autonomous systems, a little bit of AI can go a long way toward dramatically increasing productivity, efficiency, and performance. Marketing AI Institute’s Founder & CEO, Paul Roetzer, and Chief Content Officer, Mike Kaput, join forces to show marketers how to embrace AI and make it their competitive advantage. Marketing Artificial Intelligence draws on years of research and dozens of interviews with AI marketers, executives, engineers, and entrepreneurs. Roetzer and Kaput present the current potential of AI, as well as a glimpse into a near future in which marketers and machines work seamlessly to run personalized campaigns of unprecedented complexity with unimaginable simplicity. As the amount of data exponentially increases, marketers’ abilities to filter through the noise and turn information into actionable intelligence remain limited. Roetzer and Kaput show you how to make breaking through that noise your superpower. So, come along on a journey of exploration and enlightenment. Marketing Artificial Intelligence is the blueprint for understanding and applying AI, giving you just the edge in your career you’ve been waiting for.
Publisher: BenBella Books
ISBN: 1637740794
Category : Business & Economics
Languages : en
Pages : 257
Book Description
Artificial intelligence is forecasted to have trillions of dollars of impact on businesses and the economy, yet many marketers struggle to understand what it is and how to apply it in their marketing efforts. The truth is, AI possesses the power to change everything. While AI-powered marketing technologies may never achieve the sci-fi vision of self-running, self-improving autonomous systems, a little bit of AI can go a long way toward dramatically increasing productivity, efficiency, and performance. Marketing AI Institute’s Founder & CEO, Paul Roetzer, and Chief Content Officer, Mike Kaput, join forces to show marketers how to embrace AI and make it their competitive advantage. Marketing Artificial Intelligence draws on years of research and dozens of interviews with AI marketers, executives, engineers, and entrepreneurs. Roetzer and Kaput present the current potential of AI, as well as a glimpse into a near future in which marketers and machines work seamlessly to run personalized campaigns of unprecedented complexity with unimaginable simplicity. As the amount of data exponentially increases, marketers’ abilities to filter through the noise and turn information into actionable intelligence remain limited. Roetzer and Kaput show you how to make breaking through that noise your superpower. So, come along on a journey of exploration and enlightenment. Marketing Artificial Intelligence is the blueprint for understanding and applying AI, giving you just the edge in your career you’ve been waiting for.
Programming the Microsoft Bot Framework
Author: Joe Mayo
Publisher: Microsoft Press
ISBN: 1509305025
Category : Computers
Languages : en
Pages : 974
Book Description
This is the only comprehensive, authoritative guide to building Conversational User Interfaces (CUI, a.k.a. bots, chatbots, or chatterbots) with the Microsoft Bot Framework. Reflecting the next radical revolution in human-computer interaction, it will help you leverage advanced artificial intelligence (AI) and natural language processing to empower new and existing applications with stunningly intuitive conversational interfaces. Long-time Microsoft MVP Joe Mayo begins with high-level explanations of what Microsoft Bot Framework is, what you can do with it, and why it matters so much. Next, he presents the foundational knowledge you need to start creating real bots and CUIs. Step by step, you'll learn how to build message dialogs, manage conversations, interact with framework APIs, and incorporate powerful natural language processing with Microsoft's advanced Language Understanding Intelligent Service (LUIS). Mayo also offers detailed guidance on deploying your customized bots to key platforms such as Slack, Skype, and Facebook Messenger. Throughout, Mayo's practical examples combine code with clear explanations of when and why you would perform each task. From start to finish, Programming the Microsoft Bot Framework is relentlessly practical, helping you translate the advanced "magic" of intelligent bots into real solutions right now.
Publisher: Microsoft Press
ISBN: 1509305025
Category : Computers
Languages : en
Pages : 974
Book Description
This is the only comprehensive, authoritative guide to building Conversational User Interfaces (CUI, a.k.a. bots, chatbots, or chatterbots) with the Microsoft Bot Framework. Reflecting the next radical revolution in human-computer interaction, it will help you leverage advanced artificial intelligence (AI) and natural language processing to empower new and existing applications with stunningly intuitive conversational interfaces. Long-time Microsoft MVP Joe Mayo begins with high-level explanations of what Microsoft Bot Framework is, what you can do with it, and why it matters so much. Next, he presents the foundational knowledge you need to start creating real bots and CUIs. Step by step, you'll learn how to build message dialogs, manage conversations, interact with framework APIs, and incorporate powerful natural language processing with Microsoft's advanced Language Understanding Intelligent Service (LUIS). Mayo also offers detailed guidance on deploying your customized bots to key platforms such as Slack, Skype, and Facebook Messenger. Throughout, Mayo's practical examples combine code with clear explanations of when and why you would perform each task. From start to finish, Programming the Microsoft Bot Framework is relentlessly practical, helping you translate the advanced "magic" of intelligent bots into real solutions right now.
Hands-On Q-Learning with Python
Author: Nazia Habib
Publisher: Packt Publishing Ltd
ISBN: 1789345758
Category : Mathematics
Languages : en
Pages : 200
Book Description
Leverage the power of reward-based training for your deep learning models with Python Key FeaturesUnderstand Q-learning algorithms to train neural networks using Markov Decision Process (MDP)Study practical deep reinforcement learning using Q-NetworksExplore state-based unsupervised learning for machine learning modelsBook Description Q-learning is a machine learning algorithm used to solve optimization problems in artificial intelligence (AI). It is one of the most popular fields of study among AI researchers. This book starts off by introducing you to reinforcement learning and Q-learning, in addition to helping you get familiar with OpenAI Gym as well as libraries such as Keras and TensorFlow. A few chapters into the book, you will gain insights into modelfree Q-learning and use deep Q-networks and double deep Q-networks to solve complex problems. This book will guide you in exploring use cases such as self-driving vehicles and OpenAI Gym’s CartPole problem. You will also learn how to tune and optimize Q-networks and their hyperparameters. As you progress, you will understand the reinforcement learning approach to solving real-world problems. You will also explore how to use Q-learning and related algorithms in real-world applications such as scientific research. Toward the end, you’ll gain a sense of what’s in store for reinforcement learning. By the end of this book, you will be equipped with the skills you need to solve reinforcement learning problems using Q-learning algorithms with OpenAI Gym, Keras, and TensorFlow. What you will learnExplore the fundamentals of reinforcement learning and the state-action-reward processUnderstand Markov decision processesGet well versed with libraries such as Keras, and TensorFlowCreate and deploy model-free learning and deep Q-learning agents with TensorFlow, Keras, and OpenAI GymChoose and optimize a Q-Network’s learning parameters and fine-tune its performanceDiscover real-world applications and use cases of Q-learningWho this book is for If you are a machine learning developer, engineer, or professional who wants to delve into the deep learning approach for a complex environment, then this is the book for you. Proficiency in Python programming and basic understanding of decision-making in reinforcement learning is assumed.
Publisher: Packt Publishing Ltd
ISBN: 1789345758
Category : Mathematics
Languages : en
Pages : 200
Book Description
Leverage the power of reward-based training for your deep learning models with Python Key FeaturesUnderstand Q-learning algorithms to train neural networks using Markov Decision Process (MDP)Study practical deep reinforcement learning using Q-NetworksExplore state-based unsupervised learning for machine learning modelsBook Description Q-learning is a machine learning algorithm used to solve optimization problems in artificial intelligence (AI). It is one of the most popular fields of study among AI researchers. This book starts off by introducing you to reinforcement learning and Q-learning, in addition to helping you get familiar with OpenAI Gym as well as libraries such as Keras and TensorFlow. A few chapters into the book, you will gain insights into modelfree Q-learning and use deep Q-networks and double deep Q-networks to solve complex problems. This book will guide you in exploring use cases such as self-driving vehicles and OpenAI Gym’s CartPole problem. You will also learn how to tune and optimize Q-networks and their hyperparameters. As you progress, you will understand the reinforcement learning approach to solving real-world problems. You will also explore how to use Q-learning and related algorithms in real-world applications such as scientific research. Toward the end, you’ll gain a sense of what’s in store for reinforcement learning. By the end of this book, you will be equipped with the skills you need to solve reinforcement learning problems using Q-learning algorithms with OpenAI Gym, Keras, and TensorFlow. What you will learnExplore the fundamentals of reinforcement learning and the state-action-reward processUnderstand Markov decision processesGet well versed with libraries such as Keras, and TensorFlowCreate and deploy model-free learning and deep Q-learning agents with TensorFlow, Keras, and OpenAI GymChoose and optimize a Q-Network’s learning parameters and fine-tune its performanceDiscover real-world applications and use cases of Q-learningWho this book is for If you are a machine learning developer, engineer, or professional who wants to delve into the deep learning approach for a complex environment, then this is the book for you. Proficiency in Python programming and basic understanding of decision-making in reinforcement learning is assumed.
Python Reinforcement Learning
Author: Sudharsan Ravichandiran
Publisher: Packt Publishing Ltd
ISBN: 1838640142
Category : Computers
Languages : en
Pages : 484
Book Description
Apply modern reinforcement learning and deep reinforcement learning methods using Python and its powerful libraries Key FeaturesYour entry point into the world of artificial intelligence using the power of PythonAn example-rich guide to master various RL and DRL algorithmsExplore the power of modern Python libraries to gain confidence in building self-trained applicationsBook Description Reinforcement Learning (RL) is the trending and most promising branch of artificial intelligence. This Learning Path will help you master not only the basic reinforcement learning algorithms but also the advanced deep reinforcement learning algorithms. The Learning Path starts with an introduction to RL followed by OpenAI Gym, and TensorFlow. You will then explore various RL algorithms, such as Markov Decision Process, Monte Carlo methods, and dynamic programming, including value and policy iteration. You'll also work on various datasets including image, text, and video. This example-rich guide will introduce you to deep RL algorithms, such as Dueling DQN, DRQN, A3C, PPO, and TRPO. You will gain experience in several domains, including gaming, image processing, and physical simulations. You'll explore TensorFlow and OpenAI Gym to implement algorithms that also predict stock prices, generate natural language, and even build other neural networks. You will also learn about imagination-augmented agents, learning from human preference, DQfD, HER, and many of the recent advancements in RL. By the end of the Learning Path, you will have all the knowledge and experience needed to implement RL and deep RL in your projects, and you enter the world of artificial intelligence to solve various real-life problems. This Learning Path includes content from the following Packt products: Hands-On Reinforcement Learning with Python by Sudharsan RavichandiranPython Reinforcement Learning Projects by Sean Saito, Yang Wenzhuo, and Rajalingappaa ShanmugamaniWhat you will learnTrain an agent to walk using OpenAI Gym and TensorFlowSolve multi-armed-bandit problems using various algorithmsBuild intelligent agents using the DRQN algorithm to play the Doom gameTeach your agent to play Connect4 using AlphaGo ZeroDefeat Atari arcade games using the value iteration methodDiscover how to deal with discrete and continuous action spaces in various environmentsWho this book is for If you’re an ML/DL enthusiast interested in AI and want to explore RL and deep RL from scratch, this Learning Path is for you. Prior knowledge of linear algebra is expected.
Publisher: Packt Publishing Ltd
ISBN: 1838640142
Category : Computers
Languages : en
Pages : 484
Book Description
Apply modern reinforcement learning and deep reinforcement learning methods using Python and its powerful libraries Key FeaturesYour entry point into the world of artificial intelligence using the power of PythonAn example-rich guide to master various RL and DRL algorithmsExplore the power of modern Python libraries to gain confidence in building self-trained applicationsBook Description Reinforcement Learning (RL) is the trending and most promising branch of artificial intelligence. This Learning Path will help you master not only the basic reinforcement learning algorithms but also the advanced deep reinforcement learning algorithms. The Learning Path starts with an introduction to RL followed by OpenAI Gym, and TensorFlow. You will then explore various RL algorithms, such as Markov Decision Process, Monte Carlo methods, and dynamic programming, including value and policy iteration. You'll also work on various datasets including image, text, and video. This example-rich guide will introduce you to deep RL algorithms, such as Dueling DQN, DRQN, A3C, PPO, and TRPO. You will gain experience in several domains, including gaming, image processing, and physical simulations. You'll explore TensorFlow and OpenAI Gym to implement algorithms that also predict stock prices, generate natural language, and even build other neural networks. You will also learn about imagination-augmented agents, learning from human preference, DQfD, HER, and many of the recent advancements in RL. By the end of the Learning Path, you will have all the knowledge and experience needed to implement RL and deep RL in your projects, and you enter the world of artificial intelligence to solve various real-life problems. This Learning Path includes content from the following Packt products: Hands-On Reinforcement Learning with Python by Sudharsan RavichandiranPython Reinforcement Learning Projects by Sean Saito, Yang Wenzhuo, and Rajalingappaa ShanmugamaniWhat you will learnTrain an agent to walk using OpenAI Gym and TensorFlowSolve multi-armed-bandit problems using various algorithmsBuild intelligent agents using the DRQN algorithm to play the Doom gameTeach your agent to play Connect4 using AlphaGo ZeroDefeat Atari arcade games using the value iteration methodDiscover how to deal with discrete and continuous action spaces in various environmentsWho this book is for If you’re an ML/DL enthusiast interested in AI and want to explore RL and deep RL from scratch, this Learning Path is for you. Prior knowledge of linear algebra is expected.
Deep Learning with Python
Author: Francois Chollet
Publisher: Simon and Schuster
ISBN: 1638352046
Category : Computers
Languages : en
Pages : 597
Book Description
Summary Deep Learning with Python introduces the field of deep learning using the Python language and the powerful Keras library. Written by Keras creator and Google AI researcher François Chollet, this book builds your understanding through intuitive explanations and practical examples. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Machine learning has made remarkable progress in recent years. We went from near-unusable speech and image recognition, to near-human accuracy. We went from machines that couldn't beat a serious Go player, to defeating a world champion. Behind this progress is deep learning—a combination of engineering advances, best practices, and theory that enables a wealth of previously impossible smart applications. About the Book Deep Learning with Python introduces the field of deep learning using the Python language and the powerful Keras library. Written by Keras creator and Google AI researcher François Chollet, this book builds your understanding through intuitive explanations and practical examples. You'll explore challenging concepts and practice with applications in computer vision, natural-language processing, and generative models. By the time you finish, you'll have the knowledge and hands-on skills to apply deep learning in your own projects. What's Inside Deep learning from first principles Setting up your own deep-learning environment Image-classification models Deep learning for text and sequences Neural style transfer, text generation, and image generation About the Reader Readers need intermediate Python skills. No previous experience with Keras, TensorFlow, or machine learning is required. About the Author François Chollet works on deep learning at Google in Mountain View, CA. He is the creator of the Keras deep-learning library, as well as a contributor to the TensorFlow machine-learning framework. He also does deep-learning research, with a focus on computer vision and the application of machine learning to formal reasoning. His papers have been published at major conferences in the field, including the Conference on Computer Vision and Pattern Recognition (CVPR), the Conference and Workshop on Neural Information Processing Systems (NIPS), the International Conference on Learning Representations (ICLR), and others. Table of Contents PART 1 - FUNDAMENTALS OF DEEP LEARNING What is deep learning? Before we begin: the mathematical building blocks of neural networks Getting started with neural networks Fundamentals of machine learning PART 2 - DEEP LEARNING IN PRACTICE Deep learning for computer vision Deep learning for text and sequences Advanced deep-learning best practices Generative deep learning Conclusions appendix A - Installing Keras and its dependencies on Ubuntu appendix B - Running Jupyter notebooks on an EC2 GPU instance
Publisher: Simon and Schuster
ISBN: 1638352046
Category : Computers
Languages : en
Pages : 597
Book Description
Summary Deep Learning with Python introduces the field of deep learning using the Python language and the powerful Keras library. Written by Keras creator and Google AI researcher François Chollet, this book builds your understanding through intuitive explanations and practical examples. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Machine learning has made remarkable progress in recent years. We went from near-unusable speech and image recognition, to near-human accuracy. We went from machines that couldn't beat a serious Go player, to defeating a world champion. Behind this progress is deep learning—a combination of engineering advances, best practices, and theory that enables a wealth of previously impossible smart applications. About the Book Deep Learning with Python introduces the field of deep learning using the Python language and the powerful Keras library. Written by Keras creator and Google AI researcher François Chollet, this book builds your understanding through intuitive explanations and practical examples. You'll explore challenging concepts and practice with applications in computer vision, natural-language processing, and generative models. By the time you finish, you'll have the knowledge and hands-on skills to apply deep learning in your own projects. What's Inside Deep learning from first principles Setting up your own deep-learning environment Image-classification models Deep learning for text and sequences Neural style transfer, text generation, and image generation About the Reader Readers need intermediate Python skills. No previous experience with Keras, TensorFlow, or machine learning is required. About the Author François Chollet works on deep learning at Google in Mountain View, CA. He is the creator of the Keras deep-learning library, as well as a contributor to the TensorFlow machine-learning framework. He also does deep-learning research, with a focus on computer vision and the application of machine learning to formal reasoning. His papers have been published at major conferences in the field, including the Conference on Computer Vision and Pattern Recognition (CVPR), the Conference and Workshop on Neural Information Processing Systems (NIPS), the International Conference on Learning Representations (ICLR), and others. Table of Contents PART 1 - FUNDAMENTALS OF DEEP LEARNING What is deep learning? Before we begin: the mathematical building blocks of neural networks Getting started with neural networks Fundamentals of machine learning PART 2 - DEEP LEARNING IN PRACTICE Deep learning for computer vision Deep learning for text and sequences Advanced deep-learning best practices Generative deep learning Conclusions appendix A - Installing Keras and its dependencies on Ubuntu appendix B - Running Jupyter notebooks on an EC2 GPU instance
Artificial Intelligence with Python
Author: Alberto Artasanchez
Publisher: Packt Publishing Ltd
ISBN: 1839216077
Category : Computers
Languages : en
Pages : 619
Book Description
New edition of the bestselling guide to artificial intelligence with Python, updated to Python 3.x, with seven new chapters that cover RNNs, AI and Big Data, fundamental use cases, chatbots, and more. Key FeaturesCompletely updated and revised to Python 3.xNew chapters for AI on the cloud, recurrent neural networks, deep learning models, and feature selection and engineeringLearn more about deep learning algorithms, machine learning data pipelines, and chatbotsBook Description Artificial Intelligence with Python, Second Edition is an updated and expanded version of the bestselling guide to artificial intelligence using the latest version of Python 3.x. Not only does it provide you an introduction to artificial intelligence, this new edition goes further by giving you the tools you need to explore the amazing world of intelligent apps and create your own applications. This edition also includes seven new chapters on more advanced concepts of Artificial Intelligence, including fundamental use cases of AI; machine learning data pipelines; feature selection and feature engineering; AI on the cloud; the basics of chatbots; RNNs and DL models; and AI and Big Data. Finally, this new edition explores various real-world scenarios and teaches you how to apply relevant AI algorithms to a wide swath of problems, starting with the most basic AI concepts and progressively building from there to solve more difficult challenges so that by the end, you will have gained a solid understanding of, and when best to use, these many artificial intelligence techniques. What you will learnUnderstand what artificial intelligence, machine learning, and data science areExplore the most common artificial intelligence use casesLearn how to build a machine learning pipelineAssimilate the basics of feature selection and feature engineeringIdentify the differences between supervised and unsupervised learningDiscover the most recent advances and tools offered for AI development in the cloudDevelop automatic speech recognition systems and chatbotsApply AI algorithms to time series dataWho this book is for The intended audience for this book is Python developers who want to build real-world Artificial Intelligence applications. Basic Python programming experience and awareness of machine learning concepts and techniques is mandatory.
Publisher: Packt Publishing Ltd
ISBN: 1839216077
Category : Computers
Languages : en
Pages : 619
Book Description
New edition of the bestselling guide to artificial intelligence with Python, updated to Python 3.x, with seven new chapters that cover RNNs, AI and Big Data, fundamental use cases, chatbots, and more. Key FeaturesCompletely updated and revised to Python 3.xNew chapters for AI on the cloud, recurrent neural networks, deep learning models, and feature selection and engineeringLearn more about deep learning algorithms, machine learning data pipelines, and chatbotsBook Description Artificial Intelligence with Python, Second Edition is an updated and expanded version of the bestselling guide to artificial intelligence using the latest version of Python 3.x. Not only does it provide you an introduction to artificial intelligence, this new edition goes further by giving you the tools you need to explore the amazing world of intelligent apps and create your own applications. This edition also includes seven new chapters on more advanced concepts of Artificial Intelligence, including fundamental use cases of AI; machine learning data pipelines; feature selection and feature engineering; AI on the cloud; the basics of chatbots; RNNs and DL models; and AI and Big Data. Finally, this new edition explores various real-world scenarios and teaches you how to apply relevant AI algorithms to a wide swath of problems, starting with the most basic AI concepts and progressively building from there to solve more difficult challenges so that by the end, you will have gained a solid understanding of, and when best to use, these many artificial intelligence techniques. What you will learnUnderstand what artificial intelligence, machine learning, and data science areExplore the most common artificial intelligence use casesLearn how to build a machine learning pipelineAssimilate the basics of feature selection and feature engineeringIdentify the differences between supervised and unsupervised learningDiscover the most recent advances and tools offered for AI development in the cloudDevelop automatic speech recognition systems and chatbotsApply AI algorithms to time series dataWho this book is for The intended audience for this book is Python developers who want to build real-world Artificial Intelligence applications. Basic Python programming experience and awareness of machine learning concepts and techniques is mandatory.
Advanced Deep Learning with Keras
Author: Rowel Atienza
Publisher: Packt Publishing Ltd
ISBN: 178862453X
Category : Computers
Languages : en
Pages : 369
Book Description
Understanding and coding advanced deep learning algorithms with the most intuitive deep learning library in existence Key Features Explore the most advanced deep learning techniques that drive modern AI results Implement deep neural networks, autoencoders, GANs, VAEs, and deep reinforcement learning A wide study of GANs, including Improved GANs, Cross-Domain GANs, and Disentangled Representation GANs Book DescriptionRecent developments in deep learning, including Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs), and Deep Reinforcement Learning (DRL) are creating impressive AI results in our news headlines - such as AlphaGo Zero beating world chess champions, and generative AI that can create art paintings that sell for over $400k because they are so human-like. Advanced Deep Learning with Keras is a comprehensive guide to the advanced deep learning techniques available today, so you can create your own cutting-edge AI. Using Keras as an open-source deep learning library, you'll find hands-on projects throughout that show you how to create more effective AI with the latest techniques. The journey begins with an overview of MLPs, CNNs, and RNNs, which are the building blocks for the more advanced techniques in the book. You’ll learn how to implement deep learning models with Keras and TensorFlow 1.x, and move forwards to advanced techniques, as you explore deep neural network architectures, including ResNet and DenseNet, and how to create autoencoders. You then learn all about GANs, and how they can open new levels of AI performance. Next, you’ll get up to speed with how VAEs are implemented, and you’ll see how GANs and VAEs have the generative power to synthesize data that can be extremely convincing to humans - a major stride forward for modern AI. To complete this set of advanced techniques, you'll learn how to implement DRL such as Deep Q-Learning and Policy Gradient Methods, which are critical to many modern results in AI.What you will learn Cutting-edge techniques in human-like AI performance Implement advanced deep learning models using Keras The building blocks for advanced techniques - MLPs, CNNs, and RNNs Deep neural networks – ResNet and DenseNet Autoencoders and Variational Autoencoders (VAEs) Generative Adversarial Networks (GANs) and creative AI techniques Disentangled Representation GANs, and Cross-Domain GANs Deep reinforcement learning methods and implementation Produce industry-standard applications using OpenAI Gym Deep Q-Learning and Policy Gradient Methods Who this book is for Some fluency with Python is assumed. As an advanced book, you'll be familiar with some machine learning approaches, and some practical experience with DL will be helpful. Knowledge of Keras or TensorFlow 1.x is not required but would be helpful.
Publisher: Packt Publishing Ltd
ISBN: 178862453X
Category : Computers
Languages : en
Pages : 369
Book Description
Understanding and coding advanced deep learning algorithms with the most intuitive deep learning library in existence Key Features Explore the most advanced deep learning techniques that drive modern AI results Implement deep neural networks, autoencoders, GANs, VAEs, and deep reinforcement learning A wide study of GANs, including Improved GANs, Cross-Domain GANs, and Disentangled Representation GANs Book DescriptionRecent developments in deep learning, including Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs), and Deep Reinforcement Learning (DRL) are creating impressive AI results in our news headlines - such as AlphaGo Zero beating world chess champions, and generative AI that can create art paintings that sell for over $400k because they are so human-like. Advanced Deep Learning with Keras is a comprehensive guide to the advanced deep learning techniques available today, so you can create your own cutting-edge AI. Using Keras as an open-source deep learning library, you'll find hands-on projects throughout that show you how to create more effective AI with the latest techniques. The journey begins with an overview of MLPs, CNNs, and RNNs, which are the building blocks for the more advanced techniques in the book. You’ll learn how to implement deep learning models with Keras and TensorFlow 1.x, and move forwards to advanced techniques, as you explore deep neural network architectures, including ResNet and DenseNet, and how to create autoencoders. You then learn all about GANs, and how they can open new levels of AI performance. Next, you’ll get up to speed with how VAEs are implemented, and you’ll see how GANs and VAEs have the generative power to synthesize data that can be extremely convincing to humans - a major stride forward for modern AI. To complete this set of advanced techniques, you'll learn how to implement DRL such as Deep Q-Learning and Policy Gradient Methods, which are critical to many modern results in AI.What you will learn Cutting-edge techniques in human-like AI performance Implement advanced deep learning models using Keras The building blocks for advanced techniques - MLPs, CNNs, and RNNs Deep neural networks – ResNet and DenseNet Autoencoders and Variational Autoencoders (VAEs) Generative Adversarial Networks (GANs) and creative AI techniques Disentangled Representation GANs, and Cross-Domain GANs Deep reinforcement learning methods and implementation Produce industry-standard applications using OpenAI Gym Deep Q-Learning and Policy Gradient Methods Who this book is for Some fluency with Python is assumed. As an advanced book, you'll be familiar with some machine learning approaches, and some practical experience with DL will be helpful. Knowledge of Keras or TensorFlow 1.x is not required but would be helpful.