Charge Carrier Dynamics in Lead Sulfide Quantum Dot Solids

Charge Carrier Dynamics in Lead Sulfide Quantum Dot Solids PDF Author: Rachel Hoffman Gilmore
Publisher:
ISBN:
Category :
Languages : en
Pages : 117

Get Book Here

Book Description
Quantum dots, also called semiconductor nanocrystals, are an interesting class of materials because their band gap is a function of the quantum dot size. Their optical properties are not determined solely by the atomic composition, but may be engineered. Advances in quantum dot synthesis have enabled control of the ensemble size dispersity and the creation of monodisperse quantum dot ensembles with size variations of less than one atomic layer. Quantum dots have been used in a variety of applications including solar cells, light-emitting diodes, photodetectors, and thermoelectrics. In many of these applications, understanding charge transport in quantum dot solids is crucial to optimizing efficient devices. We examine charge transport in monodisperse, coupled quantum dot solids using spectroscopic techniques explained by hopping transport models that provide a complementary picture to device measurements. In our monodisperse quantum dot solids, the site-to-site energetic disorder that comes from size dispersity and the size-dependent band gap is very small and spatial disorder in the quantum dot superlattice often has a greater impact on charge transport. In Chapter 2, we show that improved structural order from self-assembly in monodisperse quantum dots reduces the interparticle spacing and has a greater impact than reduced energetic disorder on increasing charge carrier hopping rates. In Chapter 3, we present temperature-dependent transport measurements that demonstrate again that when energetic disorder is very low, structural changes will dominate the dynamics. We find increasing mobility with decreasing temperature that can be explained by a 1-2 Å contraction in the edge-to-edge nearest neighbor quantum dot spacing. In Chapter 4, we study optical states that are 100-200 meV lower in energy than the band gap. Because we work with monodisperse quantum dots, we are able to resolve this trap state separately from the band edge state and study its optical properties. We identify the trap state as dimers that form during synthesis and ligand exchange when two bare quantum dot surfaces fuse. The findings of this thesis point to the importance of minimizing the structural disorder of the coupled quantum dot solid in addition to the energetic disorder to optimize charge carrier transport.

Charge Carrier Dynamics in Lead Sulfide Quantum Dot Solids

Charge Carrier Dynamics in Lead Sulfide Quantum Dot Solids PDF Author: Rachel Hoffman Gilmore
Publisher:
ISBN:
Category :
Languages : en
Pages : 117

Get Book Here

Book Description
Quantum dots, also called semiconductor nanocrystals, are an interesting class of materials because their band gap is a function of the quantum dot size. Their optical properties are not determined solely by the atomic composition, but may be engineered. Advances in quantum dot synthesis have enabled control of the ensemble size dispersity and the creation of monodisperse quantum dot ensembles with size variations of less than one atomic layer. Quantum dots have been used in a variety of applications including solar cells, light-emitting diodes, photodetectors, and thermoelectrics. In many of these applications, understanding charge transport in quantum dot solids is crucial to optimizing efficient devices. We examine charge transport in monodisperse, coupled quantum dot solids using spectroscopic techniques explained by hopping transport models that provide a complementary picture to device measurements. In our monodisperse quantum dot solids, the site-to-site energetic disorder that comes from size dispersity and the size-dependent band gap is very small and spatial disorder in the quantum dot superlattice often has a greater impact on charge transport. In Chapter 2, we show that improved structural order from self-assembly in monodisperse quantum dots reduces the interparticle spacing and has a greater impact than reduced energetic disorder on increasing charge carrier hopping rates. In Chapter 3, we present temperature-dependent transport measurements that demonstrate again that when energetic disorder is very low, structural changes will dominate the dynamics. We find increasing mobility with decreasing temperature that can be explained by a 1-2 Å contraction in the edge-to-edge nearest neighbor quantum dot spacing. In Chapter 4, we study optical states that are 100-200 meV lower in energy than the band gap. Because we work with monodisperse quantum dots, we are able to resolve this trap state separately from the band edge state and study its optical properties. We identify the trap state as dimers that form during synthesis and ligand exchange when two bare quantum dot surfaces fuse. The findings of this thesis point to the importance of minimizing the structural disorder of the coupled quantum dot solid in addition to the energetic disorder to optimize charge carrier transport.

Nanocrystal Quantum Dots

Nanocrystal Quantum Dots PDF Author: Victor I. Klimov
Publisher: CRC Press
ISBN: 1420079271
Category : Technology & Engineering
Languages : en
Pages : 485

Get Book Here

Book Description
A review of recent advancements in colloidal nanocrystals and quantum-confined nanostructures, Nanocrystal Quantum Dots is the second edition of Semiconductor and Metal Nanocrystals: Synthesis and Electronic and Optical Properties, originally published in 2003. This new title reflects the book’s altered focus on semiconductor nanocrystals. Gathering contributions from leading researchers, this book contains new chapters on carrier multiplication (generation of multiexcitons by single photons), doping of semiconductor nanocrystals, and applications of nanocrystals in biology. Other updates include: New insights regarding the underlying mechanisms supporting colloidal nanocrystal growth A revised general overview of multiexciton phenomena, including spectral and dynamical signatures of multiexcitons in transient absorption and photoluminescence Analysis of nanocrystal-specific features of multiexciton recombination A review of the status of new field of carrier multiplication Expanded coverage of theory, covering the regime of high-charge densities New results on quantum dots of lead chalcogenides, with a focus studies of carrier multiplication and the latest results regarding Schottky junction solar cells Presents useful examples to illustrate applications of nanocrystals in biological labeling, imaging, and diagnostics The book also includes a review of recent progress made in biological applications of colloidal nanocrystals, as well as a comparative analysis of the advantages and limitations of techniques for preparing biocompatible quantum dots. The authors summarize the latest developments in the synthesis and understanding of magnetically doped semiconductor nanocrystals, and they present a detailed discussion of issues related to the synthesis, magneto-optics, and photoluminescence of doped colloidal nanocrystals as well. A valuable addition to the pantheon of literature in the field of nanoscience, this book presents pioneering research from experts whose work has led to the numerous advances of the past several years.

Colloidal Quantum Dot Optoelectronics and Photovoltaics

Colloidal Quantum Dot Optoelectronics and Photovoltaics PDF Author: Gerasimos Konstantatos
Publisher: Cambridge University Press
ISBN: 0521198267
Category : Science
Languages : en
Pages : 329

Get Book Here

Book Description
Captures the most up-to-date research in the field, written in an accessible style by the world's leading experts.

Surface Effects on Charge Carrier Dynamics in Semiconductor Quantum Dots

Surface Effects on Charge Carrier Dynamics in Semiconductor Quantum Dots PDF Author: Pooja Tyagi
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
"Due to the large surface-to-volume ratio of quantum dots, their surface conditions play a significant role in determining their electronic and optical properties. In this thesis, we show that the presence of surface states modifies the optical selection rules in quantum dots and enhances the rate of surface charge trapping. These surface-induced effects have profound impact on the measurement of multiexciton recombination and carrier multiplication processes. Specifically, in transient absorption studies, surface states result in additional decay timescales which may be misattributed to multiexciton recombination processes. Additionally, they lead to large "apparent" carrier multiplication yields even under conditions where it is forbidden by energy conservation. The surface-dependent transient absorption studies presented in this work suggest ways to identify and minimize the undesirable surface-induced signals. Interestingly, surface-induced processes also result in significant electrostatic effects. We show that due to the piezoelectric nature of wurtzite CdSe quantum dots, the strong electric field created by surface charge trapping can drive coherent acoustic phonons in these systems. We further show that the amplitude of this piezoelectric response can be controlled by altering the surface conditions of the quantum dot. Finally, we theoretically investigate the effect of multiple surface layers on carrier localization in nanostructures. We find that in a core/barrier/shell configuration, layered nanostructures offer independent control over electron and hole wave functions. These results suggest design principles for wave function engineering in potential quantum dot applications in light emitting devices, photovoltaics and optical amplification." --

Charge Carrier Dynamics and the Development of Optical Gain in Semiconductor Quantum Dots

Charge Carrier Dynamics and the Development of Optical Gain in Semiconductor Quantum Dots PDF Author: Ryan R. Cooney
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Springer Handbook of Inorganic Photochemistry

Springer Handbook of Inorganic Photochemistry PDF Author: Detlef Bahnemann
Publisher: Springer Nature
ISBN: 3030637131
Category : Science
Languages : en
Pages : 1914

Get Book Here

Book Description
The handbook comprehensively covers the field of inorganic photochemistry from the fundamentals to the main applications. The first section of the book describes the historical development of inorganic photochemistry, along with the fundamentals related to this multidisciplinary scientific field. The main experimental techniques employed in state-of-art studies are described in detail in the second section followed by a third section including theoretical investigations in the field. In the next three sections, the photophysical and photochemical properties of coordination compounds, supramolecular systems and inorganic semiconductors are summarized by experts on these materials. Finally, the application of photoactive inorganic compounds in key sectors of our society is highlighted. The sections cover applications in bioimaging and sensing, drug delivery and cancer therapy, solar energy conversion to electricity and fuels, organic synthesis, environmental remediation and optoelectronics among others. The chapters provide a concise overview of the main achievements in the recent years and highlight the challenges for future research. This handbook offers a unique compilation for practitioners of inorganic photochemistry in both industry and academia.

Quantum Dot Photodetectors

Quantum Dot Photodetectors PDF Author: Xin Tong
Publisher: Springer Nature
ISBN: 3030742709
Category : Technology & Engineering
Languages : en
Pages : 319

Get Book Here

Book Description
This book presents a comprehensive overview of state-of-the-art quantum dot photodetectors, including device fabrication technologies, optical engineering/manipulation strategies, and emerging photodetectors with building blocks of novel quantum dots (e.g. perovskite) as well as their hybrid structured (e.g. 0D/2D) materials. Semiconductor quantum dots have attracted much attention due to their unique quantum confinement effect, which allows for the facile tuning of optical properties that are promising for next-generation optoelectronic applications. Among these remarkable properties are large absorption coefficient, high photosensitivity, and tunable optical spectrum from ultraviolet/visible to infrared region, all of which are very attractive and favorable for photodetection applications. The book covers both fundamental and frontier research in order to stimulate readers' interests in developing novel ideas for semiconductor photodetectors at the center of future developments in materials science, nanofabrication technology and device commercialization. The book provides a knowledge sharing platform and can be used as a reference for researchers working in the fields of photonics, materials science, and nanodevices.

Semiconductor Nanocrystal Quantum Dots

Semiconductor Nanocrystal Quantum Dots PDF Author: Andrey Rogach
Publisher: Springer Science & Business Media
ISBN: 3211752374
Category : Technology & Engineering
Languages : en
Pages : 374

Get Book Here

Book Description
This is the first book to specifically focus on semiconductor nanocrystals, and address their synthesis and assembly, optical properties and spectroscopy, and potential areas of nanocrystal-based devices. The enormous potential of nanoscience to impact on industrial output is now clear. Over the next two decades, much of the science will transfer into new products and processes. One emerging area where this challenge will be very successfully met is the field of semiconductor nanocrystals. Also known as colloidal quantum dots, their unique properties have attracted much attention in the last twenty years.

Design and Optimization of Colloidal Quantum Dot Solids for Enhanced Charge Transport and Photovoltaics

Design and Optimization of Colloidal Quantum Dot Solids for Enhanced Charge Transport and Photovoltaics PDF Author: Sangjin Lee (Ph. D.)
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Colloidal quantum dots (CQDs) have attracted much attention due to their distinctive optical properties such as wide spectral responses and tunable absorption spectra with simple size control. These properties, together with the advantages of solution processing and superior robustness to organic materials, have motivated the recent investigation of CQD-based solar cells, which have seen rapid growth in power conversion efficiency in just the last 10 years, to a current record of over 10%. However, in order to continue to push the efficiencies higher, a better understanding of the charge transport phenomena in CQD films is needed. While the carrier transport mechanisms between isolated molecules have been explored theoretically and the device-scale mobility of CQD layers has been characterized using experimental measurements such as time-of-flight analysis and field-effect-transistor measurements, a systematic study of the connection between these two distinct scales is required in order to provide crucial information regarding how CQD layers with higher charge carrier mobility can be achieved. While a few strategies such as ligand exchanges, band-like transport, and trap-state-mediated transport have been suggested to enhance the charge carrier mobility, inhomogeneity in CQD solids has been considered a source of the mobility degradation because the electronic properties in individual CQDs may have dispersions introduced in the synthesis and/or in the deposition process, leading to the deviations of the localized energy states from the regular positions or the average energy levels. Here, we suggest that control over such design factors in CQD solids can provide important pathways for improvements in device efficiencies as well as the charge carrier mobility. In particular, we have focused on the polydispersity in CQDs, which normally lies in the range of 5-15%. The effect of size-dispersion in CQD solids on the charge carrier mobility was computed using charge hopping transport models. The experimental film deposition processes were replicated using a molecular dynamics simulation where the equilibrium positions of CQDs with a given radii distribution were determined under a granular potential. The radii and positions of the CQDs were then used in the charge hopping transport simulator where the carrier mobility was estimated. We observed large decreases (up to 70%) in electron mobility for typical experimental polydispersity (about 10%) in CQD films. These large degradations in hopping charge transport were investigated using transport vector analysis with which we suggested that the site energy differences raised the portion of the off-axis rate of charge transport to the electric field direction. Furthermore, we have shown that controlling the size distribution remarkably impacts the charge carrier mobility and we suggested that tailored and potentially experimentally achievable re-arrangement of the CQD size ensemble can mediate the mobility drops even in highly dispersive cases, and presents an avenue towards improved charge transport. We then studied the degradation in CQD solar cells with respect to the polydispersity and how these enhanced charge transport from re-design of CQD solids can boost the photovoltaic performances. In addition, we estimated the potential in the binary CQD solids in terms of their improved charge transport and efficient light absorption. Combined with the accurate size-dependent optical absorption model for CQDs, our hopping model confirmed that the inclusion of smaller CQDs could enhance both the charge transport and the solar light absorption, leading to the enhanced average charge generation rates and solar cell performance.

Advanced Characterization Techniques for Thin Film Solar Cells

Advanced Characterization Techniques for Thin Film Solar Cells PDF Author: Daniel Abou-Ras
Publisher: John Wiley & Sons
ISBN: 3527699015
Category : Science
Languages : de
Pages : 760

Get Book Here

Book Description
The book focuses on advanced characterization methods for thin-film solar cells that have proven their relevance both for academic and corporate photovoltaic research and development. After an introduction to thin-film photovoltaics, highly experienced experts report on device and materials characterization methods such as electroluminescence analysis, capacitance spectroscopy, and various microscopy methods. In the final part of the book simulation techniques are presented which are used for ab-initio calculations of relevant semiconductors and for device simulations in 1D, 2D and 3D. Building on a proven concept, this new edition also covers thermography, transient optoelectronic methods, and absorption and photocurrent spectroscopy.