Characters and Cyclotomic Fields in Finite Geometry

Characters and Cyclotomic Fields in Finite Geometry PDF Author: Bernhard Schmidt
Publisher: Springer
ISBN: 3540457976
Category : Mathematics
Languages : en
Pages : 112

Get Book Here

Book Description
This monograph contributes to the existence theory of difference sets, cyclic irreducible codes and similar objects. The new method of field descent for cyclotomic integers of presribed absolute value is developed. Applications include the first substantial progress towards the Circulant Hadamard Matrix Conjecture and Ryser`s conjecture since decades. It is shown that there is no Barker sequence of length l with 13

Characters and Cyclotomic Fields in Finite Geometry

Characters and Cyclotomic Fields in Finite Geometry PDF Author: Bernhard Schmidt
Publisher: Springer
ISBN: 3540457976
Category : Mathematics
Languages : en
Pages : 112

Get Book Here

Book Description
This monograph contributes to the existence theory of difference sets, cyclic irreducible codes and similar objects. The new method of field descent for cyclotomic integers of presribed absolute value is developed. Applications include the first substantial progress towards the Circulant Hadamard Matrix Conjecture and Ryser`s conjecture since decades. It is shown that there is no Barker sequence of length l with 13

Topics in Galois Fields

Topics in Galois Fields PDF Author: Dirk Hachenberger
Publisher: Springer Nature
ISBN: 3030608069
Category : Mathematics
Languages : en
Pages : 785

Get Book Here

Book Description
This monograph provides a self-contained presentation of the foundations of finite fields, including a detailed treatment of their algebraic closures. It also covers important advanced topics which are not yet found in textbooks: the primitive normal basis theorem, the existence of primitive elements in affine hyperplanes, and the Niederreiter method for factoring polynomials over finite fields. We give streamlined and/or clearer proofs for many fundamental results and treat some classical material in an innovative manner. In particular, we emphasize the interplay between arithmetical and structural results, and we introduce Berlekamp algebras in a novel way which provides a deeper understanding of Berlekamp's celebrated factorization algorithm. The book provides a thorough grounding in finite field theory for graduate students and researchers in mathematics. In view of its emphasis on applicable and computational aspects, it is also useful for readers working in information and communication engineering, for instance, in signal processing, coding theory, cryptography or computer science.

Geometric Properties of Banach Spaces and Nonlinear Iterations

Geometric Properties of Banach Spaces and Nonlinear Iterations PDF Author: Charles Chidume
Publisher: Springer
ISBN: 1848821905
Category : Mathematics
Languages : en
Pages : 337

Get Book Here

Book Description
The contents of this monograph fall within the general area of nonlinear functional analysis and applications. We focus on an important topic within this area: geometric properties of Banach spaces and nonlinear iterations, a topic of intensive research e?orts, especially within the past 30 years, or so. In this theory, some geometric properties of Banach spaces play a crucial role. In the ?rst part of the monograph, we expose these geometric properties most of which are well known. As is well known, among all in?nite dim- sional Banach spaces, Hilbert spaces have the nicest geometric properties. The availability of the inner product, the fact that the proximity map or nearest point map of a real Hilbert space H onto a closed convex subset K of H is Lipschitzian with constant 1, and the following two identities 2 2 2 ||x+y|| =||x|| +2 x,y +||y|| , (?) 2 2 2 2 ||?x+(1??)y|| = ?||x|| +(1??)||y|| ??(1??)||x?y|| , (??) which hold for all x,y? H, are some of the geometric properties that char- terize inner product spaces and also make certain problems posed in Hilbert spaces more manageable than those in general Banach spaces. However, as has been rightly observed by M. Hazewinkel, “... many, and probably most, mathematical objects and models do not naturally live in Hilbert spaces”. Consequently,toextendsomeoftheHilbertspacetechniquestomoregeneral Banach spaces, analogues of the identities (?) and (??) have to be developed.

Geometric Analysis and PDEs

Geometric Analysis and PDEs PDF Author: Matthew J. Gursky
Publisher: Springer Science & Business Media
ISBN: 3642016731
Category : Mathematics
Languages : en
Pages : 296

Get Book Here

Book Description
This volume contains lecture notes on key topics in geometric analysis, a growing mathematical subject which uses analytical techniques, mostly of partial differential equations, to treat problems in differential geometry and mathematical physics.

The Art of Random Walks

The Art of Random Walks PDF Author: Andras Telcs
Publisher: Springer Science & Business Media
ISBN: 3540330275
Category : Mathematics
Languages : en
Pages : 194

Get Book Here

Book Description
Einstein proved that the mean square displacement of Brownian motion is proportional to time. He also proved that the diffusion constant depends on the mass and on the conductivity (sometimes referred to Einstein’s relation). The main aim of this book is to reveal similar connections between the physical and geometric properties of space and diffusion. This is done in the context of random walks in the absence of algebraic structure, local or global spatial symmetry or self-similarity. The author studies the heat diffusion at this general level and discusses the following topics: The multiplicative Einstein relation, Isoperimetric inequalities, Heat kernel estimates Elliptic and parabolic Harnack inequality.

Representation Theory and Complex Analysis

Representation Theory and Complex Analysis PDF Author: Michael Cowling
Publisher: Springer
ISBN: 3540768920
Category : Mathematics
Languages : en
Pages : 400

Get Book Here

Book Description
Six leading experts lecture on a wide spectrum of recent results on the subject of the title. They present a survey of various interactions between representation theory and harmonic analysis on semisimple groups and symmetric spaces, and recall the concept of amenability. They further illustrate how representation theory is related to quantum computing; and much more. Taken together, this volume provides both a solid reference and deep insights on current research activity.

Gröbner Bases and the Computation of Group Cohomology

Gröbner Bases and the Computation of Group Cohomology PDF Author: David J. Green
Publisher: Springer Science & Business Media
ISBN: 9783540203391
Category : Mathematics
Languages : en
Pages : 156

Get Book Here

Book Description
This monograph develops the Gröbner basis methods needed to perform efficient state of the art calculations in the cohomology of finite groups. Results obtained include the first counterexample to the conjecture that the ideal of essential classes squares to zero. The context is J. F. Carlson’s minimal resolutions approach to cohomology computations.

Enumerative Invariants in Algebraic Geometry and String Theory

Enumerative Invariants in Algebraic Geometry and String Theory PDF Author: Marcos Marino
Publisher: Springer
ISBN: 3540798145
Category : Mathematics
Languages : en
Pages : 219

Get Book Here

Book Description
Starting in the middle of the 80s, there has been a growing and fruitful interaction between algebraic geometry and certain areas of theoretical high-energy physics, especially the various versions of string theory. Physical heuristics have provided inspiration for new mathematical definitions (such as that of Gromov-Witten invariants) leading in turn to the solution of problems in enumerative geometry. Conversely, the availability of mathematically rigorous definitions and theorems has benefited the physics research by providing the required evidence in fields where experimental testing seems problematic. The aim of this volume, a result of the CIME Summer School held in Cetraro, Italy, in 2005, is to cover part of the most recent and interesting findings in this subject.

Information Geometry

Information Geometry PDF Author:
Publisher: Springer Science & Business Media
ISBN: 3540693912
Category :
Languages : en
Pages : 263

Get Book Here

Book Description


Noncommutative Geometry

Noncommutative Geometry PDF Author: Alain Connes
Publisher: Springer
ISBN: 3540397027
Category : Mathematics
Languages : en
Pages : 364

Get Book Here

Book Description
Noncommutative Geometry is one of the most deep and vital research subjects of present-day Mathematics. Its development, mainly due to Alain Connes, is providing an increasing number of applications and deeper insights for instance in Foliations, K-Theory, Index Theory, Number Theory but also in Quantum Physics of elementary particles. The purpose of the Summer School in Martina Franca was to offer a fresh invitation to the subject and closely related topics; the contributions in this volume include the four main lectures, cover advanced developments and are delivered by prominent specialists.