Characterization and Processing of Lignocellulosic Biomass in Ionic Liquids

Characterization and Processing of Lignocellulosic Biomass in Ionic Liquids PDF Author: Michael Anthony FitzPatrick
Publisher:
ISBN:
Category :
Languages : en
Pages : 320

Get Book Here

Book Description
In the last decade there has been increasing research interest in the value of bio-sourced materials from lignocellulosic biomass. The dissolution of cellulose by ionic liquids (ILs) has led to investigations including the dissolution of cellulose, lignin, and complete biomass samples and the in situ processing of cellulose. Rapid quantitative measurement of cellulose dissolution in ILs is difficult. In this work, Fourier transform infrared spectroscopy (FTIR) spectra of cellulose dissolved in 1-ethyl-3-methylimidazolium acetate ([emim][OAc]) were subjected to partial least squares (PLS) regression to model dissolved cellulose content. PLS regression was used due to the ease in developing predictive models with this technique in addition to linear regression being ineffectual for modeling when applied to potentially thousands of variables. Applying a normalization data treatment, before regression, generated a model that estimated cellulose content within 0.533 wt%. The methods described provided the basis for a rapid methodology to determine dissolved cellulose content. Development of rapid and facile screening techniques to determine the effectiveness of various ILs as solvents for cellulose or lignin will aid in the development of lignocellulosic based bioproducts. In this work, optical microscopy with and without the use of cross-polarized lenses, was used to monitor cellulose and lignin dissolution in two imidazolium-based and two phosphonium-based ILs as well as n, n-dimethylacetamide/lithium chloride (DMAc/LiCl), demonstrating that this technique could be applied more broadly than solely for ILs. The described optical microscopy methodology was more rapid and sensitive than more traditional techniques, such as visual inspection. The viscosity of [emim][OAc] (162 cP) is 100 times that of water at 20°C and could inhibit its use as a solvent for cellulose. There is a need for simple, low-cost and environmentally benign methods to reduce the viscosity of ILs to aid in cellulose dissolution. In this work, 4 wt% cellulose dissolved in [emim][OAc] was subjected to 50 psi CO2 and 20 psi N2, as a control environment, at both 50°C and 75°C. After 24 hours a nearly 2-fold increase in dissolved cellulose over the N2 control was demonstrated through the application of a 50 psi CO2 environment for cellulose dissolution in [emim][OAc] at 50°C.

Characterization and Processing of Lignocellulosic Biomass in Ionic Liquids

Characterization and Processing of Lignocellulosic Biomass in Ionic Liquids PDF Author: Michael Anthony FitzPatrick
Publisher:
ISBN:
Category :
Languages : en
Pages : 320

Get Book Here

Book Description
In the last decade there has been increasing research interest in the value of bio-sourced materials from lignocellulosic biomass. The dissolution of cellulose by ionic liquids (ILs) has led to investigations including the dissolution of cellulose, lignin, and complete biomass samples and the in situ processing of cellulose. Rapid quantitative measurement of cellulose dissolution in ILs is difficult. In this work, Fourier transform infrared spectroscopy (FTIR) spectra of cellulose dissolved in 1-ethyl-3-methylimidazolium acetate ([emim][OAc]) were subjected to partial least squares (PLS) regression to model dissolved cellulose content. PLS regression was used due to the ease in developing predictive models with this technique in addition to linear regression being ineffectual for modeling when applied to potentially thousands of variables. Applying a normalization data treatment, before regression, generated a model that estimated cellulose content within 0.533 wt%. The methods described provided the basis for a rapid methodology to determine dissolved cellulose content. Development of rapid and facile screening techniques to determine the effectiveness of various ILs as solvents for cellulose or lignin will aid in the development of lignocellulosic based bioproducts. In this work, optical microscopy with and without the use of cross-polarized lenses, was used to monitor cellulose and lignin dissolution in two imidazolium-based and two phosphonium-based ILs as well as n, n-dimethylacetamide/lithium chloride (DMAc/LiCl), demonstrating that this technique could be applied more broadly than solely for ILs. The described optical microscopy methodology was more rapid and sensitive than more traditional techniques, such as visual inspection. The viscosity of [emim][OAc] (162 cP) is 100 times that of water at 20°C and could inhibit its use as a solvent for cellulose. There is a need for simple, low-cost and environmentally benign methods to reduce the viscosity of ILs to aid in cellulose dissolution. In this work, 4 wt% cellulose dissolved in [emim][OAc] was subjected to 50 psi CO2 and 20 psi N2, as a control environment, at both 50°C and 75°C. After 24 hours a nearly 2-fold increase in dissolved cellulose over the N2 control was demonstrated through the application of a 50 psi CO2 environment for cellulose dissolution in [emim][OAc] at 50°C.

Multifaceted Protocols in Biotechnology, Volume 2

Multifaceted Protocols in Biotechnology, Volume 2 PDF Author: Azura Amid
Publisher: Springer Nature
ISBN: 3030755797
Category : Medical
Languages : en
Pages : 163

Get Book Here

Book Description
This contributed volume, “Multifaceted Protocols in Biotechnology, Volume 2”, consists of multidisciplinary methods and techniques commonly used in biotechnology studies. There are two sections covered in this book – Ionic Liquid Related Techniques & Evergreen Biotechnology Techniques. A brief introduction supports each protocol to allow easy learning and implementation. The first section consists of three chapters covering studies in modern biotechnology focusing on the role of ionic liquid techniques in extracting secondary metabolites, enzyme stabilization and biomass processing. The second section covers evergreen methodologies. It comprises five chapters covering topics on microcarrier technology for cell culture; Polymerase Chain Reaction for non-halal sources detection in food; ELISA for biomarker identification; gamma ray-induced mutagenesis for enhancing microbial fuel cells; and the effect of temperature on antibacterial activity of Carica papaya seed extract. This book will be useful to graduate students, researchers, academics, and industry practitioners working in the area of biotechnology

Deep Eutectic Solvents for Pretreatment of Lignocellulosic Biomass

Deep Eutectic Solvents for Pretreatment of Lignocellulosic Biomass PDF Author: Pratima Bajpai
Publisher: Springer Nature
ISBN: 9811640130
Category : Science
Languages : en
Pages : 98

Get Book Here

Book Description
This book focuses on the properties of deep eutectic solvents (DESs) and recent advances in their application in lignocellulosic biomass processing. Lignocellulosic biomass conversion to biofuels, biochemicals and other value-added products has attracted global attention because it is a readily available, inexpensive and renewable resource. However, in order for biomass technologies to be commercially viable, biomass recalcitrance needs to be cost-effectively reduced. Deep eutectic solvents (DESs) are new ‘green' solvents that have the high potential for biomass processing thanks to their low cost, low toxicity, biodegradability, and easy recycling and reuse. After an overview of the current lignocellulosic biomass pretreatment, the book discusses the synthesis and physiochemical properties of DESs, as well as key findings on the effects of DES on cellulose, hemicellulose and lignin solubilization, biomass pretreatment and biomass crystallinity. It then addresses the enzymatic hydrolysis performance of DES-pretreated solids, compatibility of DESs with enzymes and microorganisms, and the recycling potential of DESs. Lastly, it compares DESs with ionic liquids, and examines the challenges and opportunities relating to extending the use of DESs in lignocellulosic processing.

Novel Catalytic and Separation Processes Based on Ionic Liquids

Novel Catalytic and Separation Processes Based on Ionic Liquids PDF Author: Dickson Ozokwelu
Publisher: Elsevier
ISBN: 0128020555
Category : Technology & Engineering
Languages : en
Pages : 282

Get Book Here

Book Description
Novel Catalytic and Separation Process Based on Ionic Liquids presents the latest progress on the use of ionic liquids (ILs) in catalytic and separation processes. The book discusses the preparation of ILs, the characterization of IL catalysts by spectroscopic techniques, catalytic reactions over IL catalysts, separation science and technology of ILs, applications in biomass utilization, and synthesis of fine chemicals. Scientists, engineers, graduate students, managers, decision-makers, and others interested in ionic liquids will find this information very useful. The book can be used as a springboard for more advanced work in this area as it contains both theory and recent applications, research conducted, and developments in separation techniques and catalysis using ionic liquids. - Presents new preparation and advanced characterization of ionic liquids catalysts - Outlines catalytic reactions using ionic liquid, thus showing higher yields and selectivity - Presents novel separation science and technology based on ionic liquids and non-thermal processes

Sustainable Solutions for Environmental Pollution, Volume 1

Sustainable Solutions for Environmental Pollution, Volume 1 PDF Author: Nour Shafik El-Gendy
Publisher: John Wiley & Sons
ISBN: 1119785359
Category : Technology & Engineering
Languages : en
Pages : 514

Get Book Here

Book Description
SUSTAINABLE SOLUTIONS FOR ENVIRONMENTAL POLLUTION This first volume in a broad, comprehensive two-volume set, Sustainable Solutions for Environmental Pollution, concentrates on the role of waste management in solving pollution problems and the value-added products that can be created out of waste, turning a negative into an environmental and economic positive. Environmental pollution is one of the biggest problems facing our world today, in every country, region, and even down to local landfills. Not just solving these problems, but turning waste into products, even products that can make money, is a huge game-changer in the world of environmental engineering. Finding ways to make fuel and other products from solid waste, setting a course for the production of future biorefineries, and creating a clean process for generating fuel and other products are just a few of the topics covered in the groundbreaking new first volume in the two-volume set, Sustainable Solutions for Environmental Pollution. The valorization of waste, including the creation of biofuels, turning waste cooking oil into green chemicals, providing sustainable solutions for landfills, and many other topics are also covered in this extensive treatment on the state of the art of this area in environmental engineering. This groundbreaking new volume in this forward-thinking set is the most comprehensive coverage of all of these issues, laying out the latest advances and addressing the most serious current concerns in environmental pollution. Whether for the veteran engineer or the student, this is a must-have for any library. AUDIENCE Petroleum, chemical, process, and environmental engineers, other scientists and engineers working in the area of environmental pollution, and students at the university and graduate level studying these areas

Ionic Liquids in Lipid Processing and Analysis

Ionic Liquids in Lipid Processing and Analysis PDF Author: Xuebing Xu
Publisher: Elsevier
ISBN: 1630670480
Category : Science
Languages : en
Pages : 486

Get Book Here

Book Description
This book serves as a reference for those interested in state-of-the-art research on the science and technology of ionic liquids (ILs), particularly in relation to lipids processing and analysis. Topics include a review of the chemistry and physics of ILs as well as a quantitative understanding of structure-activity relationships at the molecular level. Further, chapter authors examine the molecular basis of the toxicity of ILs, the prediction of the properties of ILs, and the rationale and steps toward a priori design of ionic liquids for task-defined applications. Emerging research in developing lipid-inspired ILs and their prospective use in drug formulation is described. Among the highlights are the latest advances in IL-mediated biocatalysis and biotransformation, along with lipase production, purification, and activation. - Reviews the state-of-the-art applications of ionic liquids in lipid processing and relevant areas from a variety of perspectives - Summarizes the latest advances in the measurement of the physical and chemical properties of ionic liquids and available databases of thermodynamic property datapoints - Presents the tremendous opportunities provided and challenges faced from ionic liquids as a newly emerging technology for lipids processing area

Depolymerization of Lignin for Biomass Processing in Ionic Liquids

Depolymerization of Lignin for Biomass Processing in Ionic Liquids PDF Author: Blair Jeffrey Cox
Publisher:
ISBN:
Category :
Languages : en
Pages : 356

Get Book Here

Book Description
There is growing need for technologies to displace traditional petroleum resources. Towards this goal, lignocellulosic biomass is seen as a potential renewable resource for the production of fuels and commodity chemicals. One of the most difficult components of lignocellulose to process is lignin, which is a complex, amorphous aromatic polymer that acts as one of the structural components in plants. Ionic liquids are a class of compounds that are composed completely of anions and cations that, in some cases, can completely dissolve lignocellulosic biomass. The research performed for this dissertation aims to advance the technologies of lignocellulose processing through effective depolymerization of lignin in ionic liquids. Lignin fragments from this depolymerization could be used as a feedstock for further processing into aromatic commodity chemicals or polymers. Additionally, by removing lignin, biomass becomes much more accessible to enzymatic or chemical saccharification as a step towards fermentation into ethanol or other fuels. Both base and acid catalyzed methods were explored, although the base promoted depolymerization of lignin in ionic liquids did not show much promise, as the reaction was never shown to be catalytic. Acidic routes towards lignin depolymerization were more successful. Using the acidic ionic liquid 1-H-3-methylimiazolium chloride, the ether linkages in lignin model compounds could be hydrolyzed with high yields. This technology was also applicable to the whole lignin macromolecule. The mechanisms of this reaction, as well as the effects on lignin were explored with various neutral and acidic ionic liquids, using HPLC, GPC, NMR, FT-IR, and mass spectrometry for analysis of samples. To demonstrate the applications of this technique, pine wood was treated with the acidic ionic liquids to open the structure of the wood to enzymatic saccharification through the removal of lignin and hemicellulose.

Ionic Liquids

Ionic Liquids PDF Author: Rasmus Fehrmann
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110582120
Category : Science
Languages : en
Pages : 230

Get Book Here

Book Description
The current book brings together the latest developments in the area of ionic liquids, including synthesis, purity control, toxicity, and scaling-up technologies. In addition, the authors explore the applications of ionic liquids in organic synthesis and catalysis, separation techniques and nanomaterials engineering. Written by key experts in the field, this book is an invaluable material for organic and green chemists in academia and industry.

Ionic Liquids in the Biorefinery Concept

Ionic Liquids in the Biorefinery Concept PDF Author: Rafal Bogel-Lukasik
Publisher: Royal Society of Chemistry
ISBN: 1849739765
Category : Science
Languages : en
Pages : 316

Get Book Here

Book Description
Summarising advance in the use of ionic liquids in biomass processing, this book is an important reference for researchers and practising chemists.

Biomass Fractionation Technologies for a Lignocellulosic Feedstock Based Biorefinery

Biomass Fractionation Technologies for a Lignocellulosic Feedstock Based Biorefinery PDF Author: S.I. Mussatto
Publisher: Elsevier
ISBN: 0128025611
Category : Technology & Engineering
Languages : en
Pages : 676

Get Book Here

Book Description
Biomass Fractionation Technologies for a Lignocellulosic Feedstock-based Biorefinery reviews the extensive research and tremendous scientific and technological developments that have occurred in the area of biorefinering, including industrial processes and product development using ‘green technologies’, often referred as white biotechnology. As there is a huge need for new design concepts for modern biorefineries as an alternative and amendment to industrial crude oil and gas refineries, this book presents the most important topics related to biomass fractionation, including advances, challenges, and perspectives, all with references to current literature for further study. Presented in 26 chapters by international field specialists, each chapter consists of review text that comprises the most recent advances, challenges, and perspectives for each fractionation technique. The book is an indispensable reference for all professionals, students, and workers involved in biomass biorefinery, assisting them in establishing efficient and economically viable process technologies for biomass fractionation. Provides information on the most advanced and innovative pretreatment processes and technologies for biomass Reviews numerous valuable products from lignocellulose Discusses integration of processes for complete biomass conversion with minimum waste generation Identifies the research gaps in scale-up Presents an indispensable reference for all professionals, students, and workers involved in biomass biorefinery, assisting them in establishing efficient and economically viable process technologies for biomass fractionation