Changes in sediment volume in Alder Lake, Nisqually River Basin, Washington, 1945–2011

Changes in sediment volume in Alder Lake, Nisqually River Basin, Washington, 1945–2011 PDF Author: Jonathan A. Czuba
Publisher: U.S. Department of the Interior, U.S. Geological Survey
ISBN:
Category :
Languages : en
Pages : 40

Get Book Here

Book Description
The Nisqually River drains the southwest slopes of Mount Rainier, a glaciated stratovolcano in the Cascade Range of western Washington. The Nisqually River was impounded behind Alder Dam when the dam was completed in 1945 and formed Alder Lake. This report quantifies the volume of sediment deposited by the Nisqually and Little Nisqually Rivers in their respective deltas in Alder Lake since 1945. Four digital elevation surfaces were generated from historical contour maps from 1945, 1956, and 1985, and a bathymetric survey from 2011. These surfaces were used to compute changes in sediment volume since 1945. Estimates of the volume of sediment deposited in Alder Lake between 1945 and 2011 were focused in three areas: (1) the Nisqually River delta, (2) the main body of Alder Lake, along a 40-meter wide corridor of the pre-dam Nisqually River, and (3) the Little Nisqually River delta. In each of these areas the net deposition over the 66-year period was 42,000,000 ± 4,000,000 cubic meters (m3), 2,000,000 ± 600,000 m3, and 310,000 ± 110,000 m3, respectively. These volumes correspond to annual rates of accumulation of 630,000 ± 60,000 m3/yr, 33,000 ± 9,000 m3/yr, and 4,700 ± 1,600 m3/yr, respectively. The annual sediment yield of the Nisqually (1,100 ± 100 cubic meters per year per square kilometer [(m3/yr)/km2]) and Little Nisqually River basins [70 ± 24 (m3/yr)/km2] provides insight into the yield of two basins with different land cover and geomorphic processes. These estimates suggest that a basin draining a glaciated stratovolcano yields approximately 15 times more sediment than a basin draining forested uplands in the Cascade Range. Given the cumulative net change in sediment volume in the Nisqually River delta in Alder Lake, the total capacity of Alder Lake since 1945 decreased about 3 percent by 1956, 8 percent by 1985, and 15 percent by 2011.

Changes in sediment volume in Alder Lake, Nisqually River Basin, Washington, 1945–2011

Changes in sediment volume in Alder Lake, Nisqually River Basin, Washington, 1945–2011 PDF Author: Jonathan A. Czuba
Publisher: U.S. Department of the Interior, U.S. Geological Survey
ISBN:
Category :
Languages : en
Pages : 40

Get Book Here

Book Description
The Nisqually River drains the southwest slopes of Mount Rainier, a glaciated stratovolcano in the Cascade Range of western Washington. The Nisqually River was impounded behind Alder Dam when the dam was completed in 1945 and formed Alder Lake. This report quantifies the volume of sediment deposited by the Nisqually and Little Nisqually Rivers in their respective deltas in Alder Lake since 1945. Four digital elevation surfaces were generated from historical contour maps from 1945, 1956, and 1985, and a bathymetric survey from 2011. These surfaces were used to compute changes in sediment volume since 1945. Estimates of the volume of sediment deposited in Alder Lake between 1945 and 2011 were focused in three areas: (1) the Nisqually River delta, (2) the main body of Alder Lake, along a 40-meter wide corridor of the pre-dam Nisqually River, and (3) the Little Nisqually River delta. In each of these areas the net deposition over the 66-year period was 42,000,000 ± 4,000,000 cubic meters (m3), 2,000,000 ± 600,000 m3, and 310,000 ± 110,000 m3, respectively. These volumes correspond to annual rates of accumulation of 630,000 ± 60,000 m3/yr, 33,000 ± 9,000 m3/yr, and 4,700 ± 1,600 m3/yr, respectively. The annual sediment yield of the Nisqually (1,100 ± 100 cubic meters per year per square kilometer [(m3/yr)/km2]) and Little Nisqually River basins [70 ± 24 (m3/yr)/km2] provides insight into the yield of two basins with different land cover and geomorphic processes. These estimates suggest that a basin draining a glaciated stratovolcano yields approximately 15 times more sediment than a basin draining forested uplands in the Cascade Range. Given the cumulative net change in sediment volume in the Nisqually River delta in Alder Lake, the total capacity of Alder Lake since 1945 decreased about 3 percent by 1956, 8 percent by 1985, and 15 percent by 2011.

River Flow 2020

River Flow 2020 PDF Author: Wim Uijttewaal
Publisher: CRC Press
ISBN: 1000294366
Category : Technology & Engineering
Languages : en
Pages : 2459

Get Book Here

Book Description
Rivers form one of the lifelines in our society by providing essential services such as availability of fresh water, navigation, energy, ecosystem services, and flood conveyance. Because of this essential role, mankind has interfered continuously in order to benefit most and at the same time avoid adverse consequences such as flood risk and droughts. This has resulted in often highly engineered rivers with a narrow set of functions. In the last decades rivers are increasingly considered in a more holistic manner as a system with a multitude of interdependent processes. River research and engineering has therefore added to the river fundamentals also themes like ecohydraulics, consequences of climate change, and urbanisation. River Flow 2020 contains the contributions presented at the 10th conference on Fluvial Hydraulics, River Flow 2020, organised under the auspices of the Committee on Fluvial Hydraulics of the International Association for Hydro-Environment Engineering and Research (IAHR). What should have been a lively physical gathering of researchers, students and practitioners, was converted into an online event as the COVID-19 pandemic hindered international travelling and large gatherings of people. Nevertheless, the fluvial hydraulics community showed their interest and to be very much alive with a high number of participations for such event. Since its first edition in 2002, in Louvain-la-Neuve, this series of conferences has found a large and loyal audience in the river research and engineering community while being also attractive to the new researchers and young professionals. This is highlighted by the large number of contributions applying for the Coleman award for young researchers, and also by the number of applications and attendants to the Master Classes which are aimed at young researchers and students. River Flow 2020 aims to provide an updated overview of the ongoing research in this wide range of topics, and contains five major themes which are focus of research in the fluvial environment: river fundamentals, the digital river, the healthy river, extreme events and rivers under pressure. Other highlights of River Flow 2020 include the substantial number of interdisciplinary subthemes and sessions of special interest. The contributions will therefore be of interest to academics in hydraulics, hydrology and environmental engineering as well as practitioners that would like to be updated about the newest findings and hot themes in river research and engineering.

Geomorphic analysis of the river response to sedimentation downstream of Mount Rainier, Washington

Geomorphic analysis of the river response to sedimentation downstream of Mount Rainier, Washington PDF Author: Jonathan A. Czuba
Publisher: U.S. Department of the Interior, U.S. Geological Survey
ISBN:
Category :
Languages : en
Pages : 150

Get Book Here

Book Description
A study of the geomorphology of rivers draining Mount Rainier, Washington, was completed to identify sources of sediment to the river network; to identify important processes in the sediment delivery system; to assess current sediment loads in rivers draining Mount Rainier; to evaluate if there were trends in streamflow or sediment load since the early 20th century; and to assess how rates of sedimentation might continue into the future using published climate-change scenarios. Rivers draining Mount Rainier carry heavy sediment loads sourced primarily from the volcano that cause acute aggradation in deposition reaches as far away as the Puget Lowland. Calculated yields ranged from 2,000 tonnes per square kilometer per year [(tonnes/km2)/yr] on the upper Nisqually River to 350 (tonnes/km2)/yr on the lower Puyallup River, notably larger than sediment yields of 50–200 (tonnes/km2)/yr typical for other Cascade Range rivers. These rivers can be assumed to be in a general state of sediment surplus. As a result, future aggradation rates will be largely influenced by the underlying hydrology carrying sediment downstream. The active-channel width of rivers directly draining Mount Rainier in 2009, used as a proxy for sediment released from Mount Rainier, changed little between 1965 and 1994 reflecting a climatic period that was relatively quiet hydrogeomorphically. From 1994 to 2009, a marked increase in geomorphic disturbance caused the active channels in many river reaches to widen. Comparing active-channel widths of glacier-draining rivers in 2009 to the distance of glacier retreat between 1913 and 1994 showed no correlation, suggesting that geomorphic disturbance in river reaches directly downstream of glaciers is not strongly governed by the degree of glacial retreat. In contrast, there was a correlation between active-channel width and the percentage of superglacier debris mantling the glacier, as measured in 1971. A conceptual model of sediment delivery processes from the mountain indicates that rockfalls, glaciers, debris flows, and main-stem flooding act sequentially to deliver sediment from Mount Rainier to river reaches in the Puget Lowland over decadal time scales. Greater-than-normal runoff was associated with cool phases of the Pacific Decadal Oscillation. Streamflow-gaging station data from four unregulated rivers directly draining Mount Rainier indicated no statistically significant trends of increasing peak flows over the course of the 20th century. The total sediment load of the upper Nisqually River from 1945 to 2011 was determined to be 1,200,000±180,000 tonnes/yr. The suspended-sediment load in the lower Puyallup River at Puyallup, Washington, was 860,000±300,000 tonnes/yr between 1978 and 1994, but the long-term load for the Puyallup River likely is about 1,000,000±400,000 tonnes/yr. Using a coarse-resolution bedload transport relation, the long-term average bedload was estimated to be about 30,000 tonnes/yr in the lower White River near Auburn, Washington, which was four times greater than bedload in the Puyallup River and an order of magnitude greater than bedload in the Carbon River. Analyses indicate a general increase in the sediment loads in Mount Rainier rivers in the 1990s and 2000s relative to the time period from the 1960s to 1980s. Data are insufficient, however, to determine definitively if post-1990 increases in sediment production and transport from Mount Rainier represent a statistically significant increase relative to sediment-load values typical from Mount Rainier during the entire 20th century. One-dimensional river-hydraulic and sediment-transport models simulated the entrainment, transport, attrition, and deposition of bed material. Simulations showed that bed-material loads were largest for the Nisqually River and smallest for the Carbon River. The models were used to simulate how increases in sediment supply to rivers transport through the river systems and affect lowland reaches. For each simulation, the input sediment pulse evolved through a combination of translation, dispersion, and attrition as it moved downstream. The characteristic transport times for the median sediment-size pulse to arrive downstream for the Nisqually, Carbon, Puyallup, and White Rivers were approximately 70, 300, 80, and 60 years, respectively.

Journal of Northwest Anthropology

Journal of Northwest Anthropology PDF Author: Darby C. Stapp
Publisher: Northwest Anthropology
ISBN: 1530193559
Category : Social Science
Languages : en
Pages : 146

Get Book Here

Book Description
JONA Volume 50 Number 1 - Spring 2016 Tales from the River Bank: An In Situ Stone Bowl Found along the Shores of the Salish Sea on the Southern Northwest Coast of British Columbia - Rudy Reimer, Pierre Freile, Kenneth Fath, and John Clague Localized Rituals and Individual Spirit Powers: Discerning Regional Autonomy through Religious Practices in the Coast Salish Past - Bill Angelbeck Assessing the Nutritional Value of Freshwater Mussels on the Western Snake River - Jeremy W. Johnson and Mark G. Plew Snoqualmie Falls: The First Traditional Cultural Property in Washington State Listed in the National Register of Historic Places - Jay Miller with Kenneth Tollefson The Archaeology of Obsidian Occurrence in Stone Tool Manufacture and Use along Two Reaches of the Northern Mid-Columbia River, Washington - Sonja C. Kassa and Patrick T. McCutcheon The Right Tool for the Job: Screen Size and Sample Size in Site Detection - Bradley Bowden Alphonse Louis Pinart among the Natives of Alaska - Richard L. Bland

Remote Sensing of Wetlands

Remote Sensing of Wetlands PDF Author: Ralph W. Tiner
Publisher: CRC Press
ISBN: 1482237385
Category : Science
Languages : en
Pages : 566

Get Book Here

Book Description
Effectively Manage Wetland Resources Using the Best Available Remote Sensing TechniquesUtilizing top scientists in the wetland classification and mapping field, Remote Sensing of Wetlands: Applications and Advances covers the rapidly changing landscape of wetlands and describes the latest advances in remote sensing that have taken place over the pa

Water Resources Data

Water Resources Data PDF Author:
Publisher:
ISBN:
Category : Stream measurements
Languages : en
Pages : 1004

Get Book Here

Book Description


Water Resources Data

Water Resources Data PDF Author:
Publisher:
ISBN:
Category : Stream measurements
Languages : en
Pages : 620

Get Book Here

Book Description


ISE Natural Disasters

ISE Natural Disasters PDF Author: Patrick Leon Abbott
Publisher:
ISBN: 9781260568776
Category :
Languages : en
Pages : 0

Get Book Here

Book Description


Late Pleistocene and Holocene Environmental Change on the Olympic Peninsula, Washington

Late Pleistocene and Holocene Environmental Change on the Olympic Peninsula, Washington PDF Author: Daniel G. Gavin
Publisher: Springer
ISBN: 3319110144
Category : Science
Languages : en
Pages : 148

Get Book Here

Book Description
This study brings together decades of research on the modern natural environment of Washington's Olympic Peninsula, reviews past research on paleoenvironmental change since the Late Pleistocene, and finally presents paleoecological records of changing forest composition and fire over the last 14,000 years. The focus of this study is on the authors’ studies of five pollen records from the Olympic Peninsula. Maps and other data graphics are used extensively. Paleoecology can effectively address some of these challenges we face in understanding the biotic response to climate change and other agents of change in ecosystems. First, species responses to climate change are mediated by changing disturbance regimes. Second, biotic hotspots today suggest a long-term maintenance of diversity in an area, and researchers approach the maintenance of diversity from a wide range and angles (CITE). Mountain regions may maintain biodiversity through significant climate change in ‘refugia’: locations where components of diversity retreat to and expand from during periods of unfavorable climate (Keppel et al., 2012). Paleoecological studies can describe the context for which biodiversity persisted through time climate refugia. Third, the paleoecological approach is especially suited for long-lived organisms. For example, a tree species that may typically reach reproductive sizes only after 50 years and remain fertile for 300 years, will experience only 30 to 200 generations since colonizing a location after Holocene warming about 11,000 years ago. Thus, by summarizing community change through multiple generations and natural disturbance events, paleoecological studies can examine the resilience of ecosystems to disturbances in the past, showing how many ecosystems recover quickly while others may not (Willis et al., 2010).

Gypsy Moth Management in the United States: Chapters 1-9 and appendixes A-E

Gypsy Moth Management in the United States: Chapters 1-9 and appendixes A-E PDF Author:
Publisher:
ISBN:
Category : Gypsy moth
Languages : en
Pages : 326

Get Book Here

Book Description